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Abstract

Lateral Buckling of High Pressure/High Temperature On-Bottom Pipelines

Richard J. Sandford
Oriel College, Oxford

Trinity Term, 2012

On-bottom (or unburied) pipelines, which carry hydrocarbons across the seabed, are typically
subjected to compressive axial loading arising from restrained thermal- and pressure-induced
expansion. This compressive loading usually causes a nominally straight pipeline to buckle into
a mode lying predominantly in the plane of the seabed; this response is widely termed lateral
buckling. Predicting the response of an on-bottom pipeline to thermal and pressure-induced axial
compressive loading is the primary focus of this thesis.

In assessing whether or not the structural integrity of a pipeline is at risk during lateral
buckling (and also in the post-buckling regime), finite element analyses are typically carried out.
In these analyses, the pipeline is modelled as an assembly of beam elements while the connection
between the pipe and the seabed is modelled using a macro-element, which defines the relationship
between the loads and displacements of the pipe. In this thesis, the development, calibration and
implementation of a macro-element model for use in lateral buckling design is described. The
proposed macro-element model accounts for the response during lateral displacement of multiple
pipe diameter amplitude (as appropriate to the movement of the crown of a buckle), as well as the
reversals in the direction of lateral displacement due to intermittent shut-downs in the operation
of the pipe. The model is of the hardening plasticity type and is cast in terms of vertical and
horizontal force resultants. Results from numerical analyses (using both finite element limit
analysis and the displacement-based incremental finite element method) are used to calibrate
the model. Its performance is tested by examining the results of retrospective simulations of
experimental tests. Finally, the results of field-representative structural analyses are presented,

which demonstrate the suitability of the model for use in design practice.
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Introduction

1.1 Motivation

1.1.1 Offshore pipe-lay

The vast majority of the oil and gas which is extracted offshore is transported to land through steel
pipelines. In shallow water developments (typically considered to be those in water depths of less than
300m), it is commonplace either to lay the pipeline into a pre-cut trench or to bury the pipeline beneath
the seabed. These practices are intended to: (i) ensure the pipeline remains stable when subjected to
wave and current-induced loading, (ii) shield the pipeline against potential damage from anchors and
fishing gear, and (iii) insulate the oil/gas to reduce the formation of wax deposits and gas hydrates which
limit the flow rate. In recent years, an increasing proportion of oil and gas exploration has taken place
in deep water, often from fields located tens of kilometres from shore and in water depths greater than
1000m. In these deep water depths, it is not possible to employ the well-established lay techniques used
in shallow water, and usually there is little alternative but to lay the pipeline directly upon the seabed.
Pipelines which are laid in this manner are termed on-bottom pipelines.

While on-bottom pipe-lay is ubiquitous is deep water, it has also begun to emerge as an alternative
to burial/trenching in shallow water developments. Indeed, forgoing burial or trenching — if permission
can be obtained from the relevant regulatory authority — usually brings about substantial cost saving;

often these savings are crucial in regard to the economic viability of a project.

1.1.2 High pressure (HP), high temperature (HT) pipelines

The temperature and pressure of the oil and gas in an offshore well significantly exceeds the ambient
sea-water values; Bruton & Carr [1] classify high temperature (HT) and high pressure (HP) ranges as 175-
200°C and 100-130MPa respectively. As the oil/gas flows through the pipeline, heat transfer causes the
wall temperature to increase. The propensity for the elevated wall temperature to cause axial expansion

is governed, in part, by friction along the interface between the outer pipeline wall and the seabed. If
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friction is sufficient to fully restrain axial expansion (and if the pipeline is assumed to remain elastic), it

will be subjected to the axial compressive force:
Pyr = aEAAT (1.1.1)

where AT is the change in the wall temperature relative to that of the ambient sea-water (positive
denoting an increase), o and E are respectively the coefficient of thermal expansion and Young’s modulus
of the wall material, and A is the cross-sectional area of the pipe wall.

The influence of the elevated internal pressure (which is often maintained at its high level by water
injection into the well) is most readily deduced by considering a simple, thin-walled, elastic idealization
of a straight pipeline. Under this idealization, and following from Palmer & King [2], the longitudinal

axial strain due to the elevated internal pressure is given as:

1 vApr
= — - — 1.1.2
L= 5 (UL ; > (1.1.2)

where Ap is the change in internal pressure relative to the ambient level prior to extraction (positive
denoting an increase), v is Poisson’s ratio of the wall material, ¢ is the wall thickness, 7 is the mean
radius and oy, is the (tensile positive) longitudinal component of wall stress. If the pipeline is, again,

assumed to be fully restrained (i.e. e;, = 0) then:

-
o = 2 t_pr, (1.1.3)

such that the (compressive positive) pressure-induced component of axial force carried through the pipe

wall is given as:

P, = —2nvApi2. (1.1.4)

Hence, the total pressure-induced axial force is given by the summation of P, and P, = 772Ap, the

compressive axial force contribution from the contents of the pipe, to give:

Pyp =Py + P. =77 (1 - 2v) Ap. (1.1.5)



Chapter 1: Introduction 3

Accordingly, an increase in pressure is seen to also give rise to compression (since v < 0.5 for all wall

materials). Summation of the axial force contributions from the temperature and pressure changes gives:
Py = Py + Py = aBAAT + mi% (1 — 2v) Ap. (1.1.6)

Py is widely termed ‘the fully constrained axial force’ (e.g. Bruton et al. [3]), and is commonly used in de-
sign practice, as will be discussed further in Chapter 2. For a typical single-walled steel pipeline of geome-
try: 7 = 0.5m, ¢ = 38.1mm and wall material properties: E = 210GPa, v = 0.3, o = 11x107% °C7!, the
respective contributions to the fully constrained axial force due to the temperature change, AT = 200°C,
and pressure change, Ap = 130MPa, are 53.19MN and 37.79MN, giving Py = 90.98MN.

Over its lifespan, a pipeline is not subjected to just a single, monotonic increase in compressive
loading but, rather, the following cyclic loading history. Before the well is tapped, the pipeline is often
flushed with pressurized water to clear any internal debris and to test its response to compressive loading;
this phase is commonly termed the ‘hydro-test’ (sometimes, ‘system test’). Following this, the pipeline
is drained and, therefore, unloaded. Then, once the well is tapped, the pipeline is subject to its first
increase in compressive loading due to the hot, pressurised oil/gas flow. At some future date, the flow of
oil/gas is usually stopped to carry out maintenance (e.g. to inject water/gas into the line). This causes
the pipeline to cool and the compressive loading to subside, usually inducing tension. Once the oil/gas
flow is resumed, the pipeline once again experiences compression.

Schematic representations of the expected time histories of internal pressure and inlet temperature
are shown in Fig. 1.1. Tt is noteworthy that the rate of temperature change is generally much lower than
than the rate of pressure change (the former being dictated by the insulating properties of the pipe while
the latter being controlled by choke valves). For the Greater Plutonio project (off the coast of Angola),
92 major production start-up/shut-down cycles were scheduled, with hundreds of further minor cycles

also deemed likely [4].

1.1.3 Pipeline buckling

Since pipelines are slender members, they are susceptible to buckling under compressive loading.
Throughout this thesis, buckling refers to the unstable outward bowing of a pipeline without significant
distortion to its cross-section (akin to buckling of a structural column); see, for example, Figs 1.2 and
1.3. For buried or trenched pipelines, the lateral restraint provided by the seabed typically exceeds the
pipe’s buoyant self-weight (in addition to the weight of any overlying fill), hence, buckles tend to form in
the vertical plane orthogonal to the seabed and parallel to the pipe’s major axis. This is termed upheaval
buckling. Fig. 1.2 shows an on-land, trenched pipeline which has undergone such a buckling mode. When
laid on-bottom, by contrast, the pipeline receives significantly less lateral restraint and, hence, buckles
tend to form within the plane of the seabed. This is termed lateral buckling, and is the focus of this

thesis. Fig. 1.3 shows a side-scan sonar image of a laterally buckled pipeline.
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Fic. 1.2: Upheaval buckle, after Thusyanthan et al. [5].
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Fic. 1.3: Side-scan sonar image of a lateral buckle (lateral extent of figure exaggerated, for clarity), after Bruton
et al. [6].

Another form of pipe buckling — which has received considerable attention elsewhere and will herein
be termed ‘local buckling” — occurs when the compressive wall stress exceeds a certain threshold. Local
buckling usually induces significant plastic straining over a lengthwise extent of the order of one diameter;
see Fig.1.4. Local buckling is not (directly) the focus of this research, although it is one of the failure
modes which arises when a pipeline buckles in the ‘global’ sense outlined above.

It is entirely possible that a pipeline could buckle laterally in a benign manner, that is, without
causing yield or, even if some plastic straining occurs, without exceeding a limit state (typically to
safeguard against: (i) fracture at girth welds, (ii) local buckling of the pipe wall, and (iii) low cycle
fatigue failure). However, if the compression arising from the elevated internal temperature and pressure
is sufficient to cause the surrounding sections of pipe to feed into the buckle (either during buckling itself
or in the post-buckling regime), then it is possible that a limit state could be exceeded and a rupture
could ensue.

The selection of the pipe diameter, wall thickness, steel grade for the wall material and the thickness
of any concrete coating are constrained by the desired flow rate, the necessity to insulate the product,
the requirement to preserve the structural integrity of the pipeline as it is laid onto the seabed, as well
as economic and other factors. Usually, it is not possible to design an on-bottom pipeline which complies
with the above constraints and is also capable of withstanding its in-service compressive loading without
buckling laterally. Accordingly, over the past decade, the following design philosophy has emerged:
rather than attempting to prevent lateral buckling, buckles are encouraged to form at evenly spaced
lengthwise intervals such that the curvature of each buckle lobe remains sufficiently low so as not to

exceed a limit state (and, thus, not lead to a rupture). However, the success of this approach relies upon
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F1G. 1.4: Local buckle in an instrumented length of pipe, after Carr et al. [7].

a method to predict the displacement of the pipe (and the distribution of wall stress/strain) arising from
the anticipated temporal variation of temperature and pressure to which the pipeline will be subjected.
Without a reliable method to carry out this prediction, it cannot be deduced (at least with any great
certainty) whether or not buckles will form in the desired, benign manner. It is important to emphasize
that a prediction of the buckle load (and the corresponding buckle mode), in isolation, is not sufficient.
Rather, a prediction of the evolution of the pipeline’s displacement throughout the post-buckling regime
must be sought — including the unload/reload cycles which arise due to the cyclic temperature/pressure
history. Only once a prediction of the pipeline’s response over the entirety of its lifespan is made can the
likelihood of exceeding a limit state be ascertained.

The consequences of inadequately handling thermal- and pressure-induced pipeline expansion are
evident in cases where ruptures have occurred. For example, da Costa et al. [8] provide an account of a
pipeline carrying heavy oil from a refinery in Duque de Caxias, Rio de Janeiro across the Guanabara Bay
to Niter6i. In January 2000, this pipeline fractured following lateral buckling, spilling oil from a crack
of half diameter length. McKinnon et al. [9] report of a second case of pipeline failure due to lateral
buckling; this occurrence occurred in the Erskine field in the North Sea and resulted in the pipeline being

shut down for 11 months.

1.1.4 On-bottom pipe-lay and route selection

On-bottom pipe-lay is carried out, almost exclusively, by a fleet of barges upon which pipe sections
are welded and then lowered towards the seabed. Alternative techniques in which pipe sections are
welded on shore and then either towed to site or wound upon a reel are far less common (particularly
for deep-water developments). On-bottom pipe-lay can be sub-divided into S-lay and J-lay; the name
of each technique refers to the shape assumed by the pipeline while it is suspended from the barge (see
Fig.1.5). In S-lay, a stinger is used to guide the pipeline through an over-bend (convex upward curve)
from the stern to the water while a sag-bend (concave upward curve) forms to transition between the
vertical and horizontal close to the seabed. The pipeline is nearly always pre-tensioned to ensure that the
radii of curvature of the sag and over bends are large enough to prevent local buckling of the pipe wall.
There is no stinger in J-lay but rather the pipeline is mounted close to the vertical (typically between 0°

and 15°) such that the over-bend is eliminated and the required pre-tension is constrained only by the
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Fic. 1.5: Pipe-lay schematic, after Kyriakides and Corona [10].

curvature of the sag-bend. Pre-tensioning has the beneficial effect of partially offsetting the compressive
load to which the pipeline is subjected when it is put into service. However, this offset is thought, in
most cases, to be relatively small and, to err on the side of caution, is typically neglected when a lateral
buckling assessment is carried out.

With the exception of relatively short auxiliary pipelines (such as those connecting two neighbouring
well-heads), on-bottom pipelines are rarely intended to be laid along a straight path from well to shore.

Instead, as detailed by Palmer and King [11], the choice of route is constrained by several factors including:

e the necessity to circumvent existing pipe networks and other submarine obstacles such as boulders,
iceberg flow marks and shipwrecks;

e political factors, particularly the ease with which approval for the project can be acquired from the
various regulatory authorities;

e environmental factors such as the potential for ecosystem disturbance, particularly close to the landfall
location;

e the seabed topography — ideally, a flat region of seabed is sought to prevent the pipeline forming
free-spans to bridge across valleys and depressions; and

e geotechnical/geophysical factors — a desirable site is one of homogeneous strength that is neither
susceptible to submarine landslides, tectonic activity nor currents of sufficient magnitude to induce

scour.

Despite the necessity to include route curves, there are usually portions of pipeline which are intended
to be straight or, at least, of sufficiently low curvature so as to be prone to lateral buckling. It is well known
that the buckle load (and mode) of a pipeline (like any strut) is strongly influenced by the distribution
and magnitude of out-of-straightness (OOS) along its length. Although modern pipe-lay barges typically
possess a system of thrusters to ensure the barge remains in close proximity to its desired location (as
measured by GPS), wave- and current-induced loads acting on the barge will inevitably cause some
movement and, hence, the introduction of OOS along the pipeline’s route. The touch-down point in

J-lay is closer to the barge than in S-lay and, hence, the position of the pipeline can usually be controlled
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with greater accuracy using J-lay (although, this gain in lay precision is offset in other respects; for
example, the pipeline can usually be laid more quickly using S- than J-lay since it easier to weld several
lengths of pipe simultaneously if they are mounted horizontally rather than vertically) [11].

While the lay profile is sometimes measured using an ROV (remotely-operated vehicle), the vast
majority of lateral buckling assessment analyses are carried out considerably before the pipeline is laid.
Hence, the exact lay-profile is rarely known when a lateral buckling assessment is made. As such, it
is usual to assume a range of OOS distributions (often termed seed modes); typically small-amplitude

sinusoidal imperfections are superimposed on the intended lay profile [12].

1.1.5 Lateral buckling management

If a pipeline is deemed susceptible to lateral buckling (as determined by applying the industry-
standard procedures discussed in Chapter 2), it is usually considered unacceptable to allow buckling to
occur ‘naturally’ since there is the risk that a single buckle lobe of excessively high curvature could form.
Instead, as discussed by Cooper et al. [13], one of the following strategies is typically used to increase

predictability over the location, span and number of buckle lobes.

1. Snake-lay. If the pipe-lay barge traverses a series of circular arcs joined by straight sections, an
initial snaked pipeline profile will result, as shown schematically in Fig.1.6a. It is hoped that the
inclusion of OOS at regularly repeating intervals will induce several low-amplitude, benign buckles.
This is one of the least expensive lateral buckling initiation strategies and has seen widespread use in
many developments. If a snake-lay approach is adopted, the pitch, offset and lay-bend radius can be
varied (in accordance with the capabilities of the lay barge). Typical values are quoted in the figure.

2. Buoyancy. In this approach, sections of pipe with low specific gravity coatings are included at
particular locations along the length of the line. The intention is that these sections will experience
lower lateral restraint than their neighbouring sections and, hence, will act as locations of buckle
initiation.

3. Sleepers. Sleepers are pipe segments (typical diameter: 0.7m) which are laid orthogonally to the flow
line and anchored to the seabed. The flow line is laid on top of the sleepers to induce a vertical OOS
at specified locations, as shown in Fig. 1.6b. On loading, an upheaval buckle mechanism is initiated
until the vertical load is sufficiently small such that the lateral frictional resistance between the flow
line and the sleeper can be mobilized in a lateral buckling mode.

4. Rock dumping. This involves restraining sections of the pipeline by placing rock piles at particular
locations to predetermine the location and span of the buckles, as shown on Fig.1.6c. While this
approach is potentially a highly effective way of introducing control over the buckle mode, it is

extremely difficult to pinpoint the desired location of the rock pile in deep water. Accordingly, this
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of each figure exaggerated for clarity).

approach is generally only used retrospectively to limit the formation of rogue (that is, unexpected)
buckles.

5. Zero-radius bend. In this approach, the pipeline is laid across a set of ‘triggers’ which provide a
bias to allow lateral displacement in only one direction, as indicated on Fig.1.6d. The pipeline is
snaked through the triggers which are orientated to provide an alternating bias direction with axial
position. Due to the restraining effect of the triggers, the radii of curvature of the bends are typically
much smaller than in conventional snake-lay. This is a relatively recent approach and is discussed

further by Sinclair et al. [14] and Peek & Kristiansen [15].

An alternative strategy to manage constrained pipeline expansion is to weld spools of high compliance
at certain lengthwise positions. These allow the pipeline to strain axially at preset locations and, thus,
are intended to prevent the build-up of compressive loading. Fig. 1.6e shows a ‘U’-shaped spool which,
on loading, is intended to deform, as shown. Introducing such spools is the most costly measure which

can be taken and, hence, is only used if all alternative approaches are deemed inadequate. Furthermore,
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the selection of spacing between spools is critical; if the spacing exceeds a certain threshold, then it is
conceivable that a buckle could form between two spools.

For a buckle initiation approach in which significant lateral OOS is introduced (e.g. snake lay, zero-
radius bend), or along a route curve, it is conceivable that the pipeline will experience bending, rather
than buckling, when subjected to compressive loading i.e. a bifurcation point might not be evident in the
equilibrium path (and, hence, a ‘snapping’ response will not occur). Buckling predictions are sensitive
to initial conditions, particularly the prescribed distribution of OOS which, as discussed in the preceding
section, is not known to a high degree of certainty. In contrast, bending predictions are far less sensitive
to initial conditions and, accordingly, bending is usually considered desirable (since greater confidence
can be placed in credibility of a numerical prediction). In the literature on lateral buckling, the pipeline’s
deflected shape is often described to consist of ‘buckles’ even if a bending, rather than buckling, is evident.
Although this is a misnomer, it is important to recognize that the practicing engineer is concerned with
predicting the response of both nominally straight pipelines (which are more susceptible to buckling —
an unstable response) as well as those laid with significant OOS (which are more susceptible to bending
— a stable response). After all, it is conceivable that the pipe’s curvature could become excessively high
during either bending or buckling. Hence, the scope of this thesis extends to cover both the stable and
unstable cases. Indeed, since the stability or otherwise of the equilibrium path is not known in advance,
it is important that the same method, or a slight variant thereof, can be applied to predict the pipeline’s

response in either case.

1.1.6 Problem definition summary

The problem addressed by this thesis can be summarized as follows. On-bottom pipelines are subjec-
ted to compressive loading due to the restraint of thermal- and pressure-induced expansion. A reliable
prediction of the pipeline’s response to this compressive loading is required in order to determine the
expected pipeline displacement (in particular, the formation and extent of buckles) as well as the leng-
thwise distribution of wall stress. The goal of on-bottom pipeline design is to select a buckle initiation
strategy that allows the pipeline to deform (whether by laterally buckling or bending) in a manner which

does not jeopardise its structural integrity.

1.2 Pipe-soil interaction

1.2.1 Numerical modelling approaches

A reliable numerical prediction of the response of a pipeline to compressive loading must account
for the restraint provided by the seabed. There are two approaches which can be envisaged to make
this numerical prediction. The first, and by far the most commonly used approach, is to account for the

restraint using a so-called ‘force-resultant’ constitutive model. Although, in actuality, the seabed imparts
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Fic. 1.7: Schematic representation of macro-elements in a 1-D FE analysis of an on-bottom pipeline.

a pressure over the portion of the pipe’s outer surface with which it is in contact, it is more convenient
to model the restraint by a set of resultant loads, which act at distinct points along the pipeline’s length.
A force-resultant model defines the relationship between these resultant per-unit-length forces and the
displacement of the pipe at the same lengthwise position.

For highly idealized force-resultant constitutive models, such as one-dimensional (1-D), linear elastic
models, it is possible to attain an analytical solution for the buckle load (and mode) for an initially
straight pipeline; indeed, such analytical solutions are reviewed in Chapter 2. However, when either
non-linearity is introduced into the force-resultant constitutive relationship (which is inevitable due the
irreversible nature of the stress:strain response of soil), or when an initial profile with OOS is assumed,
it becomes a substantially more difficult task to attain an analytical solution. Nonetheless, the problem
can be readily re-cast in a discrete form amenable to numerical analysis by modelling the pipeline as an
assembly of 1-D (beam) finite elements with an instance of the force-resultant constitutive model lumped
at each node between a pair of pipe elements (with the per-unit-length loads scaled by the average
of the lengths of the adjacent pipe elements). In this discrete context, the force-resultant constitutive
relationship is commonly termed a ‘macro-element’, as labelled on the schematic in Fig. 1.7. The macro-
element can, in principle, be arbitrarily complex. For example, it could be chosen to: (i) define a
coupled load:displacement relationship in more than one degree-of-freedom (DOF), and (ii) provide a
load:displacement relationship which is dependent on a set of ‘internal variables’ to account for the
influence of the prior history of displacement that the pipeline has experienced at that node.

The alternative approach is to model the full three-dimensional (3-D) nature of the problem by, for
example, assuming the seabed as a continuum which obeys a prescribed constitutive relationship. On
discretising the soil continuum (and the pipeline) into finite elements, an analysis can be envisaged in
which a set of boundary conditions are applied to the pipeline and solutions for the displacement, strain
and stress fields are sought which satisfy the basic solution requirements (namely, equilibrium, compati-
bility, the boundary conditions and constitutive relationship). Fig.1.8 shows a graphical representation

of such an analysis. However, since the size of the soil domain is so large, the computational expense of
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Fic. 1.8: 3-D continuum finite element analysis of an on-bottom pipeline, after Yu & Konuk [16].
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F1G. 1.9: Schematic of berm formation during lateral buckling.

such a 3-D analyses will inevitably be prohibitively high for use in routine design. Indeed, in principle,
the discrete element method (DEM) could also be used to carry out an equivalent 3-D on-bottom pipeline
analysis (at least, if the pipeline is laid on sand), but the computational resources required to account
for each sand grain are several orders of magnitude beyond those which are currently available such that,
at present, this is certainly not a viable approach.

At the outset of the research, of these two approaches to obtain a numerical prediction of the buckling
response of an on-bottom pipeline, the force-resultant macro-element approach was deemed to be the

most viable and, hence, was pursued.

1.2.2 Force-resultant modelling: preliminary considerations

Large-amplitude, cyclic lateral displacement

During buckling, and in the post-buckling regime, the movement of the pipeline is accompanied by
scraping away the upper layer of the seabed to form a mound of soil, termed a berm, ahead of the pipe.
This is shown schematically in Fig. 1.9. The amplitude of the buckle is likely to be influenced by the size
and strength of the berm and it is conceivable that if sufficient resistance is mobilized, the berm could act
as a restraint to further growth of the buckle (which, in turn, could lead to the formation of a separate

buckle elsewhere). When the flow of oil/gas ceases, the pipeline cools and the internal pressure reduces,
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Fic. 1.10: Berms formed by large-amplitude, cyclic, lateral displacement, after Cardoso & Silveira [17].

leading to a reduction in the compressive load and, in all likelihood, the pipeline will be subjected to
tension. Accordingly, the pipeline is anticipated to migrate back towards its as-laid position. Again,
the seabed will resist the motion of the pipeline, and the magnitude of this resistance will be largely
governed by the depth to which the pipe penetrates into the seabed. A second berm is envisaged to form
on the return path which will limit its extent. Subsequent heat-up/cool-down (pressure-rise/pressure-
drop) cycles will result in the formation, deposition and combination of berms which will influence the
evolution of the pipeline’s displacement. Fig.1.10 shows such berm formation on a clay seabed; for this
case, the pipe has moved laterally by approximately ten diameters.

The above discussion highlights a central theme of this thesis: the reaction loads exerted onto the
pipeline, at a particular lengthwise position, are likely to be governed by the evolution of the seabed
geometry in the immediate vicinity. Accordingly, a force-resultant constitutive model for an on-bottom

pipeline should be conceived to account for the influence of the evolving seabed surface geometry.

Notation and degrees-of-freedom (DOFs)

It is convenient to introduce the following coordinate frames to set out the notation used for the loads
and displacements throughout the thesis. As already used in the schematics presented in this chapter,
the position of the pipeline is defined within the right-handed Cartesian coordinate frame, X:Y:Z. The
origin of this frame is taken at the pipe inlet, the Y axis is directed towards the pipe outlet and the Z
axis is directed vertically downward into the seabed (the X axis is inclined in the lateral direction that
completes the right-handed axes set). In the field of pipeline research (at least that concerning upheaval
and lateral buckling), it is commonplace to make use of the assumption of plane strain, that is, to assume
that the curvature of the pipeline remains sufficiently small such that each cross-section moves within the
plane perpendicular to Y axis. Therefore, it is also convenient to introduce the local coordinate frame,
x:y:z, to which the movement of a particular cross section is referenced (see Fig.1.11). The y axis is
aligned to the plane strain axis, the z axis is, again, directed vertically downward and the x completes
the right-handed set. In the analyses of Chapters 3 and 4, the origin of the local coordinate frame is
taken at the position of the pipe centre following pipe-lay while, elsewhere in the thesis, it is taken at

the pipe centre immediately before that section of pipeline makes contact with the seabed.
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F1Gc. 1.12: Sign convention for loads and displacements.

Under the assumption of plane strain, only the in-plane load and displacement components need
to be considered when devising a force-resultant model (i.e. a relationship is required between the
displacements components, u, w and 6 and their respective work-conjugate load components, H, V and
M). The positive direction for each of these load and displacement components is shown in Fig.1.12.
However, in on-bottom pipeline research, it is typically assumed that the pipeline’s torsional stiffness is
sufficiently high that 6 remains negligible. At the outset of the work, this premise was accepted such
that a more restrictive force-resultant model involving only the vertical and lateral DOFs was sought.

It is important to recognise two limitations of restricting the model to just the in-plane translational
DOFs. Firstly, although the pipeline’s displacement is likely to be predicted with sufficient realism,
the moment loads will influence (to a certain extent) the prediction of the distribution of wall stress
and, hence, the prediction as to whether the pipeline will exceed a limit state. Secondly, while the
assumption of plane strain is highly convenient, the problem is three-dimensional in the sense that some
axial displacement must occur to allow for feed-in to buckles (or bending lobes). Accordingly, without
accounting for the restraint in the axial DOF (i.e. between the axial displacement, v, and the per-
unit-length axial force, f4), an entirely accurate replication of the post-buckling (or bending) response is
unlikely to be attained. Despite these limitations, at the outset of the work, a two DOF model, capable of
accounting for the restraint provided by the seabed over large-amplitude, cyclic lateral displacement, had
yet to be established and, hence, it was very much deemed a worthwhile and novel contribution. It is also
likely that the resistance to lateral and vertical displacement dominates the pipeline’s bending/buckling
response. Accordingly, it was expected that the proposed model should provide predictions in broad

agreement with those that are observed in the field. In any case, a 2-DOF model represents a significant
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advance on the 1-DOF (H:u) models which are widely used in current design practice (as will be discussed
in Chapter 2). It should also be borne in mind that an independent axial load:displacement model could

readily be used in conjunction with the 2-DOF model to be developed here.

Soil type

The vast majority of prior research on on-bottom pipelines has been dedicated to understanding their
response on clay seabeds. Indeed, since its inception in 2004, the substantial JIP (Joint Industry Project),
SAFEBUCK, has been solely devoted to pipelines on clay. While clay seabeds are more prevalent in deep
water, sand seabeds are also encountered in regions where substantial oil and gas exploration occurs (e.g.
in the Persian Gulf). Accordingly, it was decided that the force-resultant constitutive model developed
for this investigation was to be calibrated for pipes on sand (specifically, drained sand, although further
discussion on the influence of loading rate is provided in Chapter 2).

While quantitative predictions made by a model calibrated for pipes on sand will differ from one
devised for pipes on clay, there will, nevertheless, be several common aspects to both models. For
example, both models require a method to account for the evolution of the seabed surface geometry
accompanying large-amplitude, cyclic lateral displacement. Accordingly, the rigorous development of a

model calibrated for pipes on sand is also likely to be relevant for future work on clay.

1.3 Research objectives

At the outset of the work, the key objectives of the research were as follows.

1. To propose a framework for a force-resultant constitutive model to predict the load:displacement
response of a pipe undergoing large-amplitude, cyclic, lateral displacement on drained sand. In light
of previous research (which is reviewed in the subsequent chapter), the model was to be cast within
an elastic, strain-hardening plasticity framework and, hence, defined by: a yield function, flow rule,
hardening laws and elastic relations (a description of the roles of these components in the operation
of a force-resultant plasticity model is also outlined in the subsequent chapter).

2. To undertake a programme of numerical analyses to determine the instance of the V:H yield surface
(and the distribution of flow vectors) for a pipe resting on a seabed of prescribed surface geometry
and strength. The data from these numerical analyses were to be used to: (i) select the yield function,
(ii) calibrate the hardening laws and (iii) devise the plastic potential function (which specifies the flow
rule).

3. To carry out an experimental investigation to:

(a) obtain typical load:displacement paths that a section of on-bottom pipeline might experience in

the field,
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(b) determine the V:H yield surface and distribution of flow vectors at a given instant following
large-amplitude, lateral displacement (and then draw comparisons with the numerically-derived
data).

4. To carry out the numerical implementation of the force-resultant model to enable a V:H load path to
be predicted from a prescribed history of displacements (and vice-versa), and to test retrospectively
its performance against experimentally-derived load:displacement paths.

5. To implement the force-resultant model as a macro-element in a structural analysis to enable lateral
buckling analyses of representative pipelines to be undertaken. This stage of the work was to be

carried out using the commercially available finite element (FE) software, Abaqus [18].

1.4 Thesis outline

Chapter 2 contains a survey of the literature relevant to a prediction of the response of an on-
bottom pipeline to compressive loading. Deficiencies inherent to the majority of existing force-resultant
models are outlined; in particular, the discussion is focused on their inability to account adequately for
the restraint provided by the seabed following large-amplitude, cyclic lateral displacement. This chapter
concludes with a description of the proposed force-resultant model and the methods that were chosen
to generate the data to calibrate it. In Chapter 3, the results of a set of finite element limit analysis
calculations using the program OxLim are presented. The purpose of these analyses was to determine
the combinations of (V, H) loading to which a pipe element, resting on a seabed of a prescribed geometry
and strength, must be subjected to cause plastic displacement (that is, yield). Limit analysis implicitly
assumes associated flow 7.e. that the friction and dilation angles are equal. This is not appropriate for
sand and, accordingly, with the intention of accounting for the influence of non-associativity, the results
of a set of finite element analyses using Abaqus are presented in Chapter 4. Chapters 3 and 4 conclude
with the definition of the yield function and flow rule for the proposed model. In Chapter 5, the results
of an experimental testing programme are presented, focusing on the extent to which the experimental
data agrees with the numerically calibrated components of the proposed force-resultant plasticity model.
Discussion is also provided on the key observations of a set of tests which were carried out to replicate
cyclic lateral displacement of a plane strain pipe element subjected to a constant vertical load. Chap-
ter 6 outlines the numerical implementation of the proposed force-resultant model, and describes the
method which was chosen to account for the evolution of the seabed geometry with (generalized) plastic
strain. Retrospective simulations are also undertaken to test the performance of the model against the
experimental data. In Chapter 7, details are provided of the implementation of the force-resultant
model as a macro-element in a structural analysis (using Abaqus). The results of two representative
example simulation are also discussed, showing that the model can be used in design cases. Chapter 8

summarizes the key findings of the thesis.
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Background

2.1 Introduction

This chapter contains a review of the various approaches which have been proposed to predict the
response of an on-bottom pipeline to compressive loading. The chapter begins with a review of classical
analytical solutions which remain at the forefront of current design practice. A review of existing force-
resultant constitutive models is then provided and a summary of other methodologies is outlined. The
chapter concludes with a description of the framework of a force-resultant constitutive model which is
proposed to rectify the shortcomings of existing models. Further details are then provided regarding the

scheme of work which was devised to calibrate the components of the proposed model.

2.2 Analytical solutions

2.2.1 Linear elastic lateral load:displacement relationship
Arguably, the simplest approach that can be envisaged to predict the lateral buckling response of a

pipeline is to assume the lateral restraint to be linear elastic such that:
H = kgyu (2.2.1)

where kpp, is the lateral per-unit-length stiffness. Hetényi [19] carried out an extensive analytical investi-
gation to determine the deflected profile of a generic strut resting on an elastic foundation and subjected
to various combinations of axial, transverse and moment loading. The case of pure axial loading is ap-
plicable to the analysis of an on-bottom pipeline. A concise treatment of this loading case is presented
by Bazant & Cedolin [20], and is summarised as follows.

The differential equation governing the deflection of a beam with a linear elastic lateral restraint, as
obtained from equilibrium of an infinitesimally small beam element (making the usual assumptions of
small deflections), is given as:

d*u d*u
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where [ is the second moment of area of the pipe and P is the axial load (compression positive). On

substituting the trial solution: u = e*Y, the following auxiliary equation is obtained:
EIN* + PX? + ky,, = 0. (2.2.3)
This equation is satisfied by the four roots:

A =tia\/yE£V/y2 -1 (2.2.4)

where:

4 kHu P .
.y _ Y and i=—T
« D AN T

For a periodic solution for u(Y’) to exist, A must be imaginary which implies that v> > 1. Hence, P,, the

minimum compressive load to induce buckling occurs at v = 1, such that:

Py = 2/ku E1. (2.2.5)

From Eq.2.2.4, v = 1 gives the pair of repeated roots: A = +ia, such that the general solution for the

deflected profile is given as:
u(Y) = Cycos(aY) 4+ Cysin(aY) + C3Y cos (oY) + Cy Ysin (oY), (2.2.6)

where Cp, Cy, C3 and Cy are constants. For a periodic solution to exist, C3 = C4y = 0 and, if both ends
are pinned and the origin is taken at one end (such that at Y = 0, u = 0), the periodic deflected profile

is a sinusoid:

u(Y) = Cysin (oY) (2.2.7)
with half-wavelength:
m EI
L==—=nx¢ 2.2.8
(% T kHu ( )

This solution is valid either for a pipeline of length, nL (where n is the number of half-wavelengths), or
for the limiting case of a beam of infinite length (since the number of finite wavelength buckles also then
tends to infinity). Hetényi [19] gives full details of solutions for finite length beams subjected to other
boundary conditions, but further discussion is not appropriate here.

The assumption of an elastic model for the lateral load:displacement relationship is only valid for very
small lateral displacement (a small fraction of a pipe diameter). For larger lateral displacement, the soil
will reach its load carrying capacity such that the load:displacement relationship is more appropriately
defined by a model which includes plasticity. Accordingly, an elastic analysis of the type described above
is only suitable for predicting the seed mode to be prescribed in a numerical analysis which assumes a
more realistic model for the load:displacement response. However, as discussed in the preceding chapter,
an on-bottom pipeline will inevitably not be initially straight (even if a straight lay profile was intended).

Accordingly, the choice of seed mode for a numerical analysis is typically based on the representative
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Fi1c. 2.1: Variation of buckle load, P,, and half-wavelength, L, with elastic lateral stiffness, kp.,, as predicted
by the analysis of Hetényi [19] (for D = 1m, ¢ = 38.1mm, E = 210GPa and v = 0.3).

OOS observed in the field rather than a continuous sinusoid spanning the entire length of the pipeline,
as predicted by the elastic analysis outlined above.

Nevertheless, the above analysis is valuable since it identifies the initial response which is likely to
be predicted by a numerical analysis which makes use of elastic-plastic, force-resultant macro-element
models. Namely, for a nominally straight pipeline, a higher elastic lateral stiffness will lead to a higher
buckle load and a lower wavelength. Fig. 2.1 shows these trends for a pipeline with D = 1m, ¢t = 38.1mm,
FE = 210GPa and v = 0.3. For these parameter values (and o = 11x107% °C™1), the fully constrained
force (for AT = 200°C and Ap = 130GPa) is 90.98MN (c¢f. page 3). The figure shows that, for
ko > 184kPa, P, > Py, which implies that buckling is not possible above this threshold for kp,,. In
fact, as will be discussed in Chapter 5, experimental data suggests that 184kPa is a rather low value for
the elastic stiffness (at least for a pipe of 0.5m diameter and resting on a soil of typical shear modulus).
This emphasises the inappropriateness of assuming a linear elastic model for lateral load:displacement

relationship.

2.2.2 Rigid perfectly plastic lateral load:displacement relationship

Rather than assuming linear elasticity, Kerr [21] and Hobbs [22] (also Martinet [23]) considered a
rigid-plastic model for the lateral restraint which, on assuming a Coulomb friction relation for the lateral
load capacity, is given as:

+pry, foru>0
H= (2.2.9)

—pry, foru <0
where 711) is the per-unit-length submerged pipeline weight. Like the analysis of Hetényi, these solutions
are also based on Euler-Bernoulli beam theory but, in this case, a mode shape is assumed a priori and
the conditions to maintain equilibrium for that mode shape are sought subsequently. Kerr presents

derivations for the localized modes (1-4) shown in Fig. 2.2 while Hobbs later analysed the oo mode which
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Mode 1 Mode 2

F1G. 2.2: Buckle modes assumed in the analyses of Kerr and Hobbs, after Hobbs [22].
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F1G. 2.3: Geometry and nomenclature for the mode 1 analysis of Kerr [21].

spans the entirety of the pipeline.! Since the Kerr/Hobbs solutions play an integral role in the lateral
buckling assessments made by industry, the derivation of the deflected profile and buckle load for the
first mode is outlined in the following. However, for brevity, the equivalent solutions for the remaining
modes are simply duplicated from Hobbs [22].

The idealized loads subjected to the pipeline in the mode 1 analysis are shown in Fig.2.3, together
with the implied axial force distribution. In this figure, the pipeline is segregated into three regions,

labelled A, B and C.

e Region A (—L/2 <Y < L/2) is the buckled portion over which both the axial and lateral displacements
are unknown (although it is assumed that w > 0 such that the distributed load imparted by the seabed
onto the pipeline acts in the negative X direction over the entirety of L). For equilibrium of forces
in the lateral direction, two points loads of magnitude #z7,L/2 are included at the buckle extremities.
The axial compressive force carried in this region is denoted as Pp.

e Region B (—Lo/2 < Y and Y > Lo/2) contains the fully constrained portions over which both the

axial and lateral displacements are zero. The axial force carried in these portions, Fy g, is the fully

'Kerr’s and Martinet’s work was motivated by the lateral buckling of rail lines rather than on-bottom pipelines
but, nevertheless, it is as much applicable to on-bottom pipeline analyses as that of Hobbs (whose investigation
was motivated solely by heated on-bottom pipelines).
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constrained load to induce buckling. Fy g is less than Py because the formation of the buckle is
accompanied by axial extension.

e Region C contains the slippage portions: —Lo/2 < Y < —L/2 and L/2 < Y < Lo/2, over which the
lateral displacements are zero, but the axial displacements are not. Uniformly distributed axial loads
of magnitude of A’yz', are included along these slippage portions to ensure axial force equilibrium at the
interface between regions A and C. For convenience, Hobbs assumes py, = p4, such that the following
relation between the change in the axial load, APy = Py g — Py, and the slippage length, 1/2 (Lo — L)

is readily identified:
(Lo — L)

5 (2.2.10)

APy = pry,

The lateral displacement, u, in the buckled portion (region A) is given by the solution of the following
ordinary differential equation, which is obtained by the straightforward application of force equilibrium

and Euler-Bernoulli beam theory:

d2u _9 m 2 2
ﬁ—l—nu—l—g(élY - L?) =0 (2.2.11)
where m = uzv,/El and 7?2 = Pu/p1. This equation is readily solved, subject to the boundary conditions:

u (£L/2) =0, to give:

_ m COS (ﬂ?) n’Y?  a’L?
Y)=— |- — 1 2.2.12
uY) =7 ( cos(ilp) 2 T s T (22.12)
Enforcing the second boundary condition:
du
—= =0, (2.2.13)
ay Y=4L/2
gives:
kaET

where k4 = 80.76.

The variable of primary interest is Pz since it is the axial load to which the pipeline must be
subjected for the buckle to form. P p is found from Py by establishing a displacement compatibility
relationship between the axial extension of the pipeline (due to the drop in axial load) and the arc-length
of the buckled portion. Following from Hobbs’ subsequent paper [24], the axial extension within the

buckled portion is given as:

APyL
Ei , (2.2.15)
while, sg, the total axial extension of both slippage portions is given as:
APy(Ly— L)
—SEA (2.2.16)

The arc-length of the buckle is:

L/2

/ % (%)2&7 (2.2.17)

7L/2



Chapter 2: Background 21

Mode k’A k’B k’c k’D
1 80.76 6.388x10~° 0.500 1.000
2 47 1.743x107* 1.000 2.000
3 34.06 1.668x10™* 1.294 2.558
4 28.20 2.144x107* 1.608 3.216
o0 472 Eq.2.2.22 -

TABLE 2.1: Values for the constants: k,, in Eq.2.2.14, and kp and k¢ in Eq.2.2.21, for each of the buckle
modes shown in Fig.2.2.

and, hence, the displacement compatibility relation reads:

L/2

APy(Lo—L)  APyL [ 1 (du)\® _
srd -t B _/5 o) v (2.2.18)

7L/2
By using Eq.2.2.10, Ly can be eliminated from this equation to give:

L/2

(APy)* + pvyL (APy) — pv, EA / (%)2 dy =0 (2.2.19)
—L/2
which, on re-arrangement for APy, gives:
L AL\
APy = 2” 14 [1+ AR / <d—?> ay | . (2.2.20)
—L/2
On evaluating the integral, this expression simplifies to give:
Po g = P + kc,uL%',L (—1 + \/1 + %) (2.2.21)

where: kp = 6.3883x107° and kc = 0.5. For the other three localized modes (2-4), the solutions
for Py and Py g are given by equations of the same form as Eqs 2.2.14 and 2.2.21, respectively. The
derivations for these other modes are broadly analogous to that of mode 1 except that the analysis is
more cumbersome since the lengths of the secondary buckle lobes in modes 3 and 4 are unknown a priori
(and, hence, the magnitude of the lateral point loads are also unknown); see Kerr’s paper [21] for details.
Values for k4, kp and k¢ for these modes are listed in Table 2.1, together with kp, the ratio of the total
buckle length L (as labelled in Fig.2.2) to L. For the oo mode, since s5 = 0, the expression for Py p is

in a different form to that of Eq.2.2.21, and is given by:

I\ 2
Pog = Py +4.705x10 °EA <ME”> LS. (2.2.22)

For a single-walled steel pipeline of geometry: D = 0.65m, ¢ = 15mm, wall material properties:
E = 210GPa, v = 0.3, buoyant pipe weight: 7119 = 3.21kN/m, and friction coefficients: ps = pur = 0.5,
the relationships between Py and L given by Eq. 2.2.21 (for modes 1-4) and Eq.2.2.22 (for the oo
mode) are plotted in Fig.2.4. For each mode, the figure identifies a minimum P,y for a buckle to
form; this minimum value is denoted here as Fy'y and occurs at the unique buckle length, L. For this
example, the predictions for Fo'n for the localized modes are very similar (with mode 4 slightly below
modes 1-3). P(i’}{ is higher for the co mode than the localized ones although, in design practice, the oo

mode is often used to estimate the buckle force. This is most likely to be because L*° and Py} (the
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F1G. 2.4: Variation of L with Py g for buckle modes 1-4 and oo.
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Fi1G. 2.5: Influence of u, (= p14) on the mode 4 solution of Kerr [21].

respective values of L and Fj"; for the oo mode) can be expressed in closed-form according to:

1/8
2.7969x10° (EI)*
LT — = (/2 ) (2.2.23)
EAps vy
1/4
Apg
Py = 2.2889E1 ( Vo Ff’ : (2.2.24)

For this example, POCTI’{OO = 3.44MN and L*° = 69.59m. Of course, the minimum for the other modes
could be computed numerically; indeed, for this case, the minimum load for the fourth mode, P&’}f, is
2.74AMN (79.7% of POCG’{OO), and the corresponding critical buckle length, L, is 70.16m. The influence
of ur, (= pa) on the relationship between Py and L is shown in Fig.2.5. This figure identifies that for

higher puy, (= pa), a greater Py g is required to induce a buckle, but the span is lower (lower L).

2.2.3 Lateral buckling assessment

The solutions of Kerr/Hobbs are widely used by practicing engineers to assess the susceptibility of a
nominally straight pipeline to lateral buckling. This assessment is typically carried out by comparing the
expected axial force distribution with Pocf}’{oo (or, occasionally, one of the solutions for Fg'yy for alocalized

mode). The expected axial force distribution is calculated by making the following assumptions.
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1. The pipeline is free to expand at either end. At the well-head, this is typically true since pipeline end
terminations (PLETS) allow slip between the pipe and foundation mud-mat [25].

2. The per-unit-length axial load capacity is modelled adequately by a Coulomb friction relation:

+pay, forv>0
fa= (2.2.25)

—pay, forv <0

where p4 and 71’) are assumed to not vary with axial position.

Under these assumptions, the axial load to which the pipeline must be subjected to induce axial displa-

cement towards Y = 0 is given as:
Y

Y

P(Y) = / fa(Y')dy' = / — Ay dY' = —pavY (2.2.26)
0 0

where Y’ is a dummy variable. Likewise, the axial load to which the pipeline must be subjected to induce

axial displacement towards Y = Lp, is given as:

Lp Lp
P(Y)= / fa(Y')dy' = / pAY,dY' = pary, (Lp —Y). (2.2.27)
Y Y

These expressions can be re-cast in dimensionless form as:

P ~Y/Lp for expansion towards Y = Lp

(2.2.28)

, p—
HATp 1-Y/Lp for expansion towards Y = 0.

Fig. 2.6a is a schematic plot of these relations in dimensionless P/u4~}:Y/Lp space. The axial load capacity
is the minimum absolute value of P and this is shown by the solid line in Fig.2.6b. Under the premise
that a Coulomb friction model for the per-unit-length axial load capacity is appropriate, the axial force
distribution shown in the figure is that which would be sustained if lateral buckling does not occur and the
fully constrained load is greater than the peak of this distribution. In this case, somewhat intuitively, the
pipeline is expected to expand outward from its centre-point when subjected to a temperature/pressure
increase. This is shown in Fig. 2.6c by the linear variation of axial extension, v, with axial position, y.
If the fully constrained load (as given by Eq.1.1.6) is less than the peak shown in Fig.2.6b, then the

central portion of the pipeline is expected to be fully constrained, as shown in Fig.2.7. For this scenario:

e over 0 <Y < Po/uu~,, the pipeline expands towards Y = 0;
o over Po/uay, <Y < (Lp— Po/ua~,), the pipeline is fully constrained; and
e over 0 <Y < (Lp — Po/us~,) the pipeline expands towards Y = Lp.
Accordingly, the fully constrained length, L¢, is given as:
Lo = Lp —2P0/pay), (2.2.29)

which implies that a long (high Lp), heavy (high +,) pipeline carrying oil/gas of low temperature and

pressure (low AT and Ap and, hence, low P), and resting on a seabed with high axial resistance (high
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F1G. 2.6: Idealized axial force and displacement distributions for an unconstrained, straight pipeline.
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Fic. 2.7: Idealized axial force and displacement distributions for a partially constrained, straight pipeline.
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F1Gc. 2.8: Schematic showing the concept of virtual anchors and the virtual anchor spacing (VAS).

pra) will have a larger constrained length than a short (low Lp), light (low ~;,) pipeline carrying oil/gas
of high temperature and pressure (high AT and Ap and, hence, high P), resting on a seabed with low
axial resistance (low p4). If Py;7° > max (|P|), the pipeline is deemed susceptible to lateral buckling.

Sometimes, the expected axial load capacity is increased by a safety factor to add conservatism to this

susceptibility assessment.

2.3 Numerical analyses using 1-DOF force-resultant models

2.3.1 Current design practice and virtual anchor spacing (VAS)

If a pipeline is adjudged to be susceptible to lateral buckling, a series of numerical analyses are
then carried out using the FE method and the force-resultant macro-element approach (as introduced
in §1.2.1). Typically, highly idealized, independent, elastic perfectly plastic models are assumed for the
lateral (H:u) and axial (fa:v) load:displacement relationships (as shown schematically in Fig. 1.7, page
10). Like in the analysis of Kerr/Hobbs, the magnitude of the axial and lateral capacities are assumed to
take the form of Coulomb friction relations (i.e. the axial and lateral load capacities are taken as p f‘wzl)
and ,ULWII;, respectively). The vertical DOF is, usually, fully restrained, such that the deflection of the
pipe is confined to the X:Y plane.

Since large parametric studies are typically carried out by industry, FE analyses of whole pipelines
are rarely undertaken since their computational expense is deemed to be too high. Instead, only a
portion of the pipeline, termed the virtual anchor spacing (VAS), is analysed. Virtual anchors are
the points between two buckles which are assumed to remain stationary throughout the heat-up/cool-
down (pressure-rise/pressure-drop) cycles; see Fig.2.8. The VAS is the length of pipeline between two
neighbouring virtual anchors. Since encastré supports can be inserted where virtual anchors form, the
VAS can be extracted and analysed independent of the remainder of the pipeline. The objective of a FE
analysis of a single VAS is to test whether the pipeline feeds into the centre of the buckle, as desired,
without the formation of an unplanned buckle elsewhere between the virtual anchors. Checks are also

carried out to ensure the peak wall stress remains below an acceptable threshold.
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Fic. 2.9: Idealized axial force and displacement distributions for an unconstrained laterally buckled pipeline.
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Fi1G. 2.10: Idealized axial force and displacement distributions for a partially constrained laterally buckled

pipeline.
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A desirable VAS is one that is sufficiently large so that it can be seeded appropriately (using, for
example, snake-lay) and, yet, small enough so that rogue buckles do not form. While the Kerr/Hobbs
analysis provides a prediction of the total buckle length, L, (which could be used to infer the buckle
spacing), initial estimates of the VAS are typically based on experience, rather than a theoretical basis
[12]. This is primarily because the Kerr/Hobbs analysis assumes that the pipeline is initially straight
and uniform, whereas the inclusion of OOS (due to the inclusion of a buckle initiation measure) is
likely to influence the buckle spacing strongly. Typically, the VAS is taken to be in the range: 1-2km.
Fig.2.9 is a schematic plot of the idealized axial force distribution if four buckles form over the fully
constrained portion and slippage occurs over the entire length. Fig.2.10 is an equivalent schematic if
the fully constrained load is reached. For this case, a higher VAS is allowable since buckles can form at
distinct locations, separated by fully constrained lengths of (nominally straight) pipeline.

VAS analyses are usually carried out using a range of values for py and pa. Indeed, Monte Carlo
simulations are typically carried out in which p; and g4 are assumed to take probabilistic distributions
(see Sinclair et al. [14] for further details). The aim is to seek the combination which gives the maximum
prediction of the peak stress for the chosen VAS, that is, the most onerous eventuality. From this estimate

to the peak stress, the likelihood of exceeding a limit state is then quantified.

2.3.2 Analyses of Tvergaard and Needleman

In the interests of summarising the findings to be expected from the numerical analyses carried out
by industry, it is insightful to review Tvergaard & Needleman’s [26] investigation. Like the analyses of
Kerr/Hobbs, the application of Tvergaard & Needleman’s work was the lateral buckling of rail tracks.
However, the findings are of interest (qualitatively, at least) to an on-bottom pipeline analysis.

Tvergaard & Needleman report a series of FE structural analyses using 1-D bar elements with a seed

() ) ()

where §; is the amplitude of a sinusoidal imperfection of half-wavelength, L, and 85 is the peak amplitude

mode given by:

wY) = (51 + d9 exp

of an exponential function which is superimposed upon the sinusoid and decays either side of the centre-
point, Y = Lr/2. Lp is, again, the pipeline length, such that there are n = L/Lp half-wavelengths
in the seed mode. Like the on-bottom pipeline numerical analyses carried out by industry, Tvergaard
& Needleman assumed independent lateral and axial load:displacement relationships (although, rather
than perfect plasticity, a power law relation was used to define the post-yield dependence of load on
displacement).

Two sets of analyses were carried out; in the first, 6, was taken as zero such that the seed mode was
a pure sinusoid, while in the second, d, was taken as a small fraction of §; such that the amplitude of

the central sine wave was set to be marginally greater than the amplitudes of the surrounding waves.
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Fi1G. 2.11: Sample results from Tvergaard & Needleman’s [26].

Investigations taking positive dy were prompted by field observations that rail tracks do not tend to
buckle into a continuous periodic mode over their entire length but, instead, one buckle lobe tends to
grow at the expense of the surrounding lobes. This localized buckle mode appears to be also evident for
on-bottom pipelines, c¢f. Fig.1.3.

In Fig.2.11a, the results of five tests which were carried out as part of the first set of analyses (i.e.
those assuming a purely sinusoidal seed mode) are shown on a plot of the temperature change, AT,
against the end axial deflection, venq. Each of these tests was carried out with Lp = L = 6m such
that a single half-wavelength (n = 1) was prescribed to span the entire strut/pipeline. As expected,
the plots show that reducing the imperfection amplitude (for the same wavelength) leads to an increase
in the value of AT needed to cause buckling. The plot also reveals that the post-buckling response
depends on the imperfection amplitude. For §; = 0.005m, 0.010m and 0.015m, the value of AT to
maintain equilibrium decreases as vepq increases. This implies an unstable response, and suggests that
the pipeline is expected to undergo snap-through behaviour on reaching the maximum AT (the points
marked x’). For §; = 0.020m and 0.025m, on the other hand, there is no peak temperature, but rather
AT increase monotonically with venq. Hence, as expected, the findings of this investigation support the
notion that the smaller the ratio of the wave amplitude to the half-wavelength, the greater the likelihood
of encountering an unstable response.

In Fig.2.11b, the results of two tests which were carried out as part of the second set of analyses
(those with positive d3) are shown as a plot of AT against the maximum absolute lateral deflection,
.- Both tests assumed: L = 6m, §; = 0.02m and 5 = 2x10~°m (0.1% of &;) but for the first test,
Lp was taken as 54m (to give n = 9) whereas for the second test, Lp was taken as 102m (to give n = 17).

A plot of the results of a purely periodic test (0, = 0) with n = 1 are also shown on this set of axes.

These plots show that the value of AT to cause buckling for all three tests is approximately the same.
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However, the post-buckling response differs. For both tests with positive dy, it is reported that, while
the amplitude of the central buckle lobes increased with an increase in AT, the other lobes unloaded
elastically. From Fig.2.11b, it is evident that the net effect of inducing a localized response is to reduce
the temperature needed to maintain equilibrium in the post-buckling regime. This finding tallies with
the observation that a localized mode is found to exist in the field (i.e. that a localized response is
energetically favourable). The figure shows that the post-buckling temperature for the 102m (n = 17)
pipeline is lower than that for the 54m (n = 17) one.

Miles’ thesis |27| reports further FE analyses of the type described above as well as physical model
testing, in which a model pipeline was loaded on a rigid base (such that the assumptions underpinning his
numerical work were matched to those of the experimental programme). However, further discussion on
this work is not appropriate here since the remainder of this chapter (and, indeed, the thesis) is focused
on the development of more realistic force-resultant constitutive models than those used in these inves-
tigations, with a particular emphasis on incorporating the influence of the load:displacement response
in the vertical DOF. However, Tvergaard & Needleman’s investigation provides broad conclusions to be
borne in mind when carrying out FE analyses of nominally straight on-bottom pipelines. In particular,
buckle localization can be predicted by the inclusion of a very small localized imperfection and that
the temperature (hence, compressive load) required to sustain a localized response is significantly less
than that required to sustain a periodic one. Interestingly, the latter conclusion supports that of Hobbs’
analysis, since the buckle load for Hobbs’ co mode is greater than the buckle load for any of the four

localized modes.

2.4 Shortcomings of current design practice

The analytical solutions developed by Kerr/Hobbs, and the majority of the numerical analyses car-
ried out in industry, make use of independent, 1-DOF force-resultant models for the lateral and axial
load:displacement relationships. As will be discussed further in §2.8, experimental data provides com-
pelling evidence to suggest that the lateral:load displacement response is, in fact, strongly linked to the
response in the vertical DOF. In particular, for loading scenarios in which the buoyant pipe weight at
a given cross-section changes substantially (due to local changes in the elevation of the pipe), the ho-
rizontal resistance is also likely to change significantly. Only by devising a model in 2-DOFs can such
interdependencies be accounted for appropriately. A further shortcoming of the use of 1-DOF models is
the empiricism inherent to the choice of horizontal load capacity (uz value). In part, this is because of
uncertainties relating the initial embedment of the pipe and the seabed strength. However, it should also
be borne in mind that selecting representative p7, values (which remain constant with changing horizontal
displacement) is a highly challenging task owing to the inevitable evolution of the horizontal load with

displacement (due to berm formation as well as vertical load/displacement changes, as discussed above).
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The above limitations of the force-resultant models used by industry have prompted the research
community to develop more realistic models, based on hardening plasticity theory, to predict an on-
bottom pipe element’s load:displacement response. These models are reviewed in the remainder of the
chapter, together with details of the methods that were used to generate the data to calibrate them.
However, before proceeding to this review, it is important to comment briefly on Verley & Sotberg’s [28]
model, which is recommended for use in the recent DNV [29] guidelines. Verley & Sotberg’s model is a
pseudo 2-DOF model in the sense that it uses a set of heuristics to determine the current penetration
depth from which a prediction of the current per-unit-length horizontal load capacity is then made. It
is a more advanced model than the simple 1-DOF models outlined above and is also computationally
efficient. However, it is has not been shown to reproduce experimental trends with sufficient reliability
to be classed as a rigorous model, and given the simple set of heuristics on which it is based, it is unlikely

to be able to do so (at least for a wide range of pipe weights and initial embedment depths).

2.5 2-DOF force-resultant plasticity

In 1987, Schotman & Stork [30] set out a framework, based on hardening plasticity and drawing
analogies with the Cam-clay model, to capture the 2-DOF pipe-soil interaction response on drained
sand. Their model, implemented in a manner appropriate for use in non-linear structural analyses, was
found to be successful in reproducing experimental trends. Later, in 1989, Schotman [31] adapted this
approach to model spud-can foundations, also on drained sand. This pioneering work spawned much
further research aimed at devising and calibrating similar plasticity-based models for offshore foundations,
including Tan [32], Nova & Montrasio [33], Martin [34], Gottardi et al. [35], Cassidy [36]. More recently,
Zhang and co-workers [37, 38, 39, 40] and Hodder & Cassidy [41] have further developed Schotman’s
early work on pipelines by calibrating similar 2-DOF models to define the relationships between the
loads, V and H, and the displacements, w and w, for the pipeline problem. Zhang et al. [38] considered
the drained response of pipe elements on calcareous sand, while Hodder & Cassidy [41] looked at pipes
on undrained clay. Both of these models are discussed in §2.7, after the following explanation of the
operation of such plasticity-based models, and some discussion on dimensionless groups.

In this section, the components and operation of a force-resultant model are summarised in the
context of a pipe element, subjected to the loads V' and H and undergoing the displacements, w and wu.
The starting axiom of such a plasticity model is the decomposition of the displacements into elastic and

plastic portions:
W o= We+ Wy (2.5.1)

The model is then defined by the following four components.
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F1G. 2.12: Schematic of a yield surface, plastic potential and flow vector.

1. The yield function, f. This is a function of the loads, V and H, and, in the case of hardening
plasticity, a set of hardening parameters, x . By convention, f is defined such that values of V' and
H which cause yield give f = 0 and, accordingly, a plot of the zero contour of f is termed the yield
surface. Also by convention, f is typically devised such that (V, H) points which plot inside the yield
surface give f < 0, while (V, H) points which plot outside the yield surface give f > 0; see Fig.2.12.
There are several parallels between a force-resultant plasticity model and a continuum plasticity
model devised for a soil (e.g. Cam-clay). One such connection is the analogous roles of the vertical
load, V, in a force-resultant model, and the mean effective pressure, p’, in continuum setting (see
Martin [34] for a full discussion on this analogy). Historically, p’ has almost exclusively been used as
the abscissa of a plot in which the deviatoric stress, ¢, is the ordinate and, to mirror this convention in
a force-resultant context, V is plotted throughout the thesis on the horizontal axis while H is plotted
on the vertical axis.
2. The elasticity relations. These define the relationships between the changes in the loads and the
changes in the elastic displacement components. Typically, in the context of pipe-soil force-resultant

models, these are taken to be incrementally linear and, hence, given as:

oV _ kvw kv Owe (2.53)
oH kmw kiu OlUe
where kv, kv, ke and kg, are constants. In a more generic context, kv, kyvu, ke and kg,
could be taken as functions of some other variables; in particular, ‘coupled plasticity’ refers the case
when kv, kv, kgw and kg, are taken as functions of the plastic displacement components.
3. The flow rule. This defines the ratio of the infinitesimal plastic displacement components at yield,
and is commonly formulated by introducing a plastic potential, g. The plastic potential is a function

of the loads, V and H, a second set of parameters, xg4, as well as a set of dummy variables which, by

convention, are typically chosen such that g is zero for the current (V, H) yield point. On introducing
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a plastic potential, the flow rule is given as:
A oy (2.5.4)
oy 99/oH
where A is the plastic multiplier. The geometric interpretation of the flow rule is as follows. A so-
called flow vector directed normal to the g = 0 contour, at the current (V, H) yield point, is inclined
along the direction of infinitesimal plastic displacement in the space of displacements that are work-
conjugate to the loads (see Fig.2.12). An associated flow rule, g = f, implies that the flow vector is
also inclined along the normal to the yield surface and, hence, the terms: normality and associated
flow are synonymous. Conversely, a non-associated flow rule, g # f, implies that the flow vector is
inclined along a direction different from the normal to the yield surface.

If an equal aspect ratio is used for the V:H axes, then a set of work-conjugate plastic displacements
axes, 0wp:0u,, will also have an equal aspect ratio. Accordingly, throughout the remainder of the
thesis, when a set of dw),:0u, axes are superimposed upon a V:H set, the V:H axes are chosen to
have an equal aspect ratio such that a flow vector plotted in dw,:6u, space has the straightforward
interpretation shown in Fig.2.12 (note that the angle between the flow vector and the H axis, «, is
the same as the angle at which the vector of resultant incremental plastic displacement is inclined to
the du, axis).

4. The hardening laws. For hardening plasticity, relations are required to define the evolution of the
hardening parameters, x ¢ — which specify the size and shape of the yield surface — with the plastic
displacement components. These hardening laws can either be defined in infinitesimal form (that is,
an infinitesimal change in the hardening variables is computed from an infinitesimal change in the
plastic displacements, dw, and du,) or in finite form (that is, the hardening variables are taken as
functions of the total plastic displacements, w, and w,).

Throughout the thesis, it will often be of interest to discuss the size and shape of the yield surface
following a particular history of plastic displacement. In such discussion, it is convenient to refer to
‘the current instance of the yield surface’ to emphasize that the discussion is then applicable only to

the size and shape of the yield surface for the current values of the hardening parameters.

When implemented as a macro-element in a structural analysis, a plasticity model is tasked with com-
puting updated values for the loads, V' and H, for given increments in the displacement components,
Aw and Auw. Since the flow rule (and, sometimes, the hardening laws) are infinitesimal relationships, an
integration scheme is required to carry out this update. However, for the purpose of this introductory
discussion, it is convenient to outline the operation of a force-resultant plasticity model by considering
Aw and Awu as sufficiently small changes such that they can be considered as infinitesimal. Indeed, this
is essentially the premise of an explicit integration scheme and, under this premise, it is convenient to

consider the following three scenarios of loading.
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F1G. 2.13: Schematic showing the V:H load paths dEscussed in §2.5.

1. For a change in the loads in which the initial and updated (V, H) points plot inside, or on, the
current instance of the yield surface (see load path A—B in Fig.2.13), only elastic displacements
occur. According to the hardening laws, the evolution of the yield surface is dependent on changes in
the plastic displacement components and, hence, it follows that the size and shape of the yield surface
is unchanged.

2. For a change in the loads in which the initial (V, H) point plots inside the current instance of the
yield surface and the updated (V, H) point plots outside the current instance of the yield surface (see
load path C—D in Fig.2.13), the step consists of two portions; in the first (C—E), there are only
elastic displacements while in the second (E—D), both elastic and plastic displacements occur. These
portions can be considered separately; the first treated as described in point 1, while the second is
treated as described in point 3.

3. For a change in the loads in which the initial (V, H) point plots on the current instance of the yield
surface and the updated (V, H) point plots outside the current instance of the yield surface (see load
path E—D in Fig.2.13), the step consists of both elastic and plastic displacements. The ratio of
the horizontal to vertical plastic displacement components is dictated by the flow rule, while their
magnitude must be such that the yield surface expands or contracts to allow the updated (V, H) point
to plot on the updated instance of the yield surface. The elastic displacements are again related to

the change in the loads via the elasticity relations.

2.6 Dimensional analysis

The remainder of this chapter is largely focused on a review of those 2-DOF force-resultant plasticity
models which have been constructed with a greater emphasis on geotechnics. Often, these models are
defined in terms of dimensionless variables so that they can be applied to pipes of arbitrary diameter
and seabeds of arbitrary strength.? Accordingly, at this juncture, it is convenient to set out the dimen-
sionless groups which govern the load:displacement response of an on-bottom pipe. In the following, the
appropriate dimensionless groups for pipes on both drained sand and undrained clay are presented and

discussed. The former case is applicable to the research which is presented in the remaining chapters of

20f the models discussed subsequently, only the one proposed by Zhang et al. [39] does not adhere to this
principle since its physical dimensions are set, by its elastic constants.
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the thesis, while the latter case is applicable to the subsequent discussion on the prior research which
has been carried out on undrained clay.

Following from the work of Kelly et al. [42], it is convenient to distinguish between strength and
stiffness when formulating dimensionless groups. Strength, in this context, refers to the bearing capacity
of the seabed for the current position of the pipe (i.e. a plastic response), while stiffness refers to the
relationship between the loads and displacements for values of the loads which are remote from those
needed to bring about bearing capacity failure (i.e. an elastic response). In general, strength is of
primary interest to a pipe-soil force-resultant model since, during lateral buckling/bending, the pipe is
continually undergoing plastic failure. Nevertheless, some discussion on stiffness is worthwhile since a
prediction of the initiation of lateral buckling is likely to depend (possibly, quite strongly) on the values

for the elastic constants.

2.6.1 Strength on drained sand

Concerning strength on drained sand, a common choice of independent variables for purely vertical
loading are: the soil’s effective self-weight — 4/, the pipe diameter — D, the per-unit-length vertical load —
V', the vertical component of displacement — w, the interface friction angle — §, and the internal angle of
friction — ¢, which is the parameter used to quantify the strength of the soil. A dimensionless relationship

between these variables is:
Vv

w
(= 5) 2.6.1
")/,DQ fA <D ) ¢ ) ( )
where f4 is a dimensionless function. The group on the left hand side of this expression, V/+/ D2, relates to
the ratio of the vertical stress induced by the applied load to the stress induced by the soil’s self-weight.

This group is used extensively throughout the thesis and, hence, it is convenient to introduce the symbol,

V, as its shorthand. The ratio, w/D, is often termed the embedment ratio.

Implications for experimental work

In an experimental context, the value of ¢’ is not specified directly but, instead, it depends on the
relative density, Ip, and, in general, also the mean effective stress level, p’. Bolton’s [43, 44] correlations

suggest that:

e for p’ > 150kPa, ¢’ increases linearly with Ip and decreases linearly with In (p’), while

e for p’ < 150kPa, p’ exerts a negligible influence on ¢ such that ¢’ and Ip are uniquely correlated.

For 1g scale model testing, the stress level at geometrically similar points is a factor of n,, times smaller
at model scale than prototype scale, where n,, is the ratio of the length of the prototype to length of
the model. Accordingly, if p’ at prototype scale is greater than the 150kPa, similitude of ¢’ can not be
attained by carrying out scale model testing at the same relative density. Conversely, if p’ at prototype

scale is less than, or equal to, 150kPa, it is no longer critical to match the stress level between different



Chapter 2: Background 35

scales and, providing the model scale test is carried out at the same relative density as the prototype
test, ¢/ will be the same. Accordingly, given the significance of the magnitude of p’ on the scaling laws,
it is insightful to attempt to estimate the range of values for p’ which are expected in the field. To attain
this estimate, the following, idealized analysis of the penetration of a pipe into a sand seabed was carried
out.

Consider Fig.2.14a which depicts a section of pipe, penetrated to a depth, w, into a level seabed.
For an element of soil located at a distance D below the seabed surface (point A), the vertical effective
stress, ol,, can be approximated as the summation of a term due to the soil’s self-weight, 4/, and a term

due to the applied vertical load, V', to give:

o, =~"(D—w)+ 2K (2.6.2)
C

where ¢ = \/m is the semi chord width, as labelled on the figure. For this estimate to o), V
was approximated as the product of the per-unit-length buoyant pipe weight and the over-loading ratio,
R. Three values for R (5, 10, 20) and three values for D (0.1m, 0.3m, 1.0m) were considered. In all
cases, a (submerged) pipe density of 6850kg/m3 was assumed, while the wall thickness, ¢, was taken
to be 5% of D. To deduce the in-plane direct stress component, o}, an estimate to the lateral earth
pressure coefficient at rest, Ky, was required. This was conveniently taken as (1 —sin¢’), the widely
used approximation to Jaky’s [45] relation for normally loaded soils; see Muir Wood [46] for further
discussion. The out-of-plane direct stress is indeterminate (it takes the value needed to enforce the plane
strain condition), however, for pragmatic purposes, it was assumed to be equal to 0.8 of the mean in-
plane stress, /2 (o), + 07,), as suggested by Stroud [47] based on simple shear testing at low stress levels;
see also Muir Wood [46]. Under these assumptions, if ¢’ is taken as 30°, the mean stress, p/, is 0.707,.
Figs 2.14b and 2.14c¢ are plots of the variation of p’ with w for various D and R, respectively. The plots
suggest that p’ is typically less than the critical value of 150kPa unless w is particularly low, or R is
very high. Given that p’ is likely to decrease during lateral displacement (since V' during operation is
less than the peak value when it is laid), it appears reasonable to assume that p’ is typically less than
150kPa and, hence, the reduction of the stress level in 1g scale model testing is not of key concern.

It is important to comment that if the stress level is deemed to be of a sufficiently large magnitude
so as to influence ¢, then 1g physical model testing need not be disregarded entirely. The preparation
of a sample with a lower relative density (lower Ip) than that present in the field can suppress excessive
dilation and, thus, compensate for the influence of the reduced stress level; see Kelly et al. [42] and
Bienen et al. [48] for further discussion on this topic. This is, of course, a standard approach used in
laboratory testing, although it is acknowledged that, while an initial Ip can be specified by the sample
preparation, the movement of the pipe will densify an initially loose sample and, thus, negate (to some
extent) the attempt to offset the influence of the reduced stress level on ¢'. Despite this, it is important

to bear in mind that soil is likely to be close to critical state following cyclic lateral displacement, such
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Fi1c. 2.14: Variation of p’ with penetration depth, w, for t = 0.05D, v = 101<N/m3 , various D and R.

that the influence of stress level on ¢’ is then negligible (Bolton’s relations, given above, apply to the
peak strength only).

In any case, once ¢’ is matched between scales, Eq. 2.6.1 implies that it is sufficient to carry out
physical scale model testing using just one value for D and, likewise, just one value for 4/. However,
if just one type of sand is to be used then, in order to investigate the response for various ¢', it is
necessary to vary Ip and, hence, also vary 7/. Nevertheless, the dimensionless relation of 2.6.1 enables

the respective influences of 4/ and Ip to be separated appropriately.

Implications for numerical work

Whereas the strength, density and dilatancy of sands are intrinsically linked in a physical context,
the parameters governing these attributes in a numerical analysis are prescribed independently. For soil-
structure numerical analyses, +' is usually dictated by the prescribed loading, whereas ¢’ and the angle
of dilation, 1, are specified as independent parameters in the constitutive model. In one respect, this is
highly convenient since Eq. 2.6.1 suggests that the same values of D and 4/ can be used in all analyses,

without loss of generality. However, the freedom to choose arbitrary pairings of ¢’ and 1) means that, in
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order for a numerical analysis to be representative of a real soil, it is necessary for their values to match
those evident experimentally (i.e. in a numerical context, ¥ should be included as an argument of the
dimensionless function in Eq. 2.6.1, as well as ¢/).

An appropriate choice of value for 1), for a given value of ¢/, can be deduced from Bolton’s [43] plane

strain strength-dilatancy correlation, which is given as:

¢ =, + 0.8y (2.6.3)

where ¢, is the effective critical state internal angle of friction, which is a material specific constant,
typically bounded between 30° and 37° [43]. However, as will be discussed in Chapter 3, it is often
convenient to choose pairings of ¢’ and v which differ from those which are applicable to a real sand.
In particular, the assignment of an associated flow rule in a continuum context (for which ¢ = ¢’) turns
out to have certain theoretical and computational advantages. Nevertheless, selecting values for ¢’ and
¢ which do not satisfy Eq. 2.6.3 for a realistic value of ¢/, implies that the relative density (hence, the
tendency for dilation) which is modelled numerically is not representative of that observed experimentally

for the same ¢'.

Extension to planar translation

The above discussion has focused solely on the response to vertical loading. For the more general case
of planar translation during lateral displacement, two extensions to the dimensionless relation of Eq. 2.6.1
are required. Firstly, the influence of the horizontal load component, H, needs to be taken into account
by introducing H/y'D? (or, alternatively, H/v) as an additional argument of f4. Indeed, the dimensionless
relation of H/y/D? will be used repeatedly throughout the thesis and, hence, it is convenient to introduce
H as its shorthand. Secondly, for large-amplitude lateral displacement, the bearing capacity afforded
by the seabed is likely to be a strong function of the seabed surface geometry (for example, the height
or area of a berm). Accordingly, it is envisaged that a series of geometric variables, with dimensions of
either length or length?, are needed to characterize the seabed surface geometry. These variables can be

readily reduced to dimensionless form by scaling by D or D?, and also included as arguments of f4.

2.6.2 Stiffness on drained sand
Concerning stiffness on drained sand, a common choice of independent variables for purely vertical
loading are: the shear modulus — G, Poisson’s ratio — v, the per-unit-length vertical load — V| and the

vertical component of elastic displacement, w.. The dimensionless relation between these variables is:

Vv We

— = —,v). 2.6.4
= fn (%) (2.6.4)
If linear elasticity is assumed (as it often is), the form of the dimensionless relationship for the vertical

DOF is:

|4 We

a5 = ffc (v). (2.6.5)
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Therefore, under premise of linearity, the vertical elastic load:displacement relationship can be written
as:

V = %VwGwe (2.6.6)

where ky,, is a dimensionless constant for a given sand (i.e. for a given value of v). Accordingly, as
noted by Muir Wood [46], data derived from a single test, at any scale, on a sand of known Poisson’s
ratio, is sufficient to define the vertical elastic relationship. Generalising the above expression to the case

of two-dimensions gives the incremental form of the elasticity relationship as:

Vo | Bre Bva )} dwe ) (2.6.7)

6H ktrw ki Otte

where kv, ki and kg, are further dimensionless elastic constants.
With regard to the implementation of a force-resultant model, the difficulty in applying Eq. 2.6.7
concerns the choice of value for G. Experimental evidence (e.g. Wroth et al. [49], Coop & Jovicic [50])

suggests that, for sand, G is not a constant but, rather, is a function of both the stress and strain levels.

To attain an estimate of G which accounts for this behaviour, Wroth et al. [49] proposed the following

¢ _a <04’>n (2.6.8)

Pa Pa

empirical correlation:

where G is a dimensionless constant, p, is atmospheric pressure and the exponent, n, increases with strain
level (although, 0.5 is usually taken as a representative value). The dependence of G on o) (which, in
turn, depends on V and w, ¢f. Eq. 2.6.2) is an admission that G is not truly an independent parameter,
as was initially posited when deducing Eq. 2.6.4. Indeed, it is readily apparent that if the expression for
ol given by Eq. 2.6.2 were to be substituted into Eq. 2.6.8, then G would depend on the total vertical
displacement, w, and hence, also its plastic component, w,. Accordingly, coupled elastic relations would
arise, which substantially increases the complexity of the numerical implementation of a force-resultant
model. Therefore, for simplicity, it is commonplace to use an estimate of G for a representative value of
ol so as to maintain G as a constant. On introducing the subscript, r, to denote a representative value

of a given quantity, Eq. 2.6.2 can be readily re-written as:

vV,
(00), =D+ 55 (2.6.9)

where a, = 1 —wr/D and B, = 2¢r/D = 2y/a, (1 — o). Substituting the above expression for (o7,), for

o) in Eq. 2.6.8, and carrying out some straightforward manipulations gives:

= V. \" n
G = Gpglin) (ar + W) (")/D) s (2610)

which, in turn, can be substituted into Eq. 2.6.6 to give:

Voo wey g2 \UT v\




Chapter 2: Background 39

Accordingly, a dimensionless relation for stiffness, which accounts for the dependence of GG on the stress

and strain levels is given as:

V We Pa (1=n) Vi wy

where fp is a further dimensionless function. This equation implies that if two tests were to be car-
ried out at different scales, the results would be expected to collapse onto a common, straight line in
V/y'D2: (we/D) (pa/y’D)(lfn) space, providing similarity of the groups Vr/+/D? and wr/D is maintained. Sta-
ted equivalently, this implies that G for the first test would be expected to be a factor of \/71D1/4,D,
times larger than G for the second test, where the subscripts, 1 and 2, denote the values of 4" and D for

each test and n has been taken as 0.5.

2.6.3 Strength on undrained clay

Concerning strength on undrained clay, common choices for the independent variables are: the per-
unit-length vertical load — V, the vertical displacement component — w, the pipe diameter — D, and the
undrained shear strength — s,, which is assumed here to be spatially constant. The contribution of 4’ to
the vertical load capacity is usually assumed to be very small (relative to that due to s,) and, therefore,

its influence is typically neglected. A dimensionless relation between these variables is:

Ssz ~ fp (%) (2.6.13)

where fp is a dimensionless function. This relationship implies that testing on undrained clay can be
carried out using just one value for s, and, also, one value for D, without loss of generality. For the
extension to planar translation, an additional argument of the function, fg, such as H/s,D would also
need to be included and, like for loading on drained sand, dimensionless groups to characterize the seabed
surface geometry would also need to be included to account for the response following large-amplitude

lateral displacement.

2.6.4 Stiffness on undrained clay
With regard to stiffness on undrained clay, it is commonplace to assume V', w., D and G as inde-
pendent variables (it is not necessary to include Poisson’s ratio since undrained conditions imply v = 0.5).

A dimensionless relation between these variables is given as:

Vv We
— = — 2.6.14

Gp ~I* < D ) ( )
where fr is a dimensionless function. Typically, the shear modulus is assumed to be directly proportional

to the undrained shear strength, which implies that the following could also be taken as an appropriate

dimensionless relation:

= fa <%> : (2.6.15)
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where fg is a further dimensionless function. Under the premise of linearity, this relationship can be
written as:

V = kywSuWe (2.6.16)

where ky,, is a dimensionless constant and, hence, for the extension to 2-DOF, the incremental form of

the elasticity relations are given as:

A I A R (2.6.17)

0H krw ko O
The dimensionless relation of Eq. 2.6.15, together with that of Eq. 2.6.13, suggests that the results of
tests carried out at different scales should collapse onto a common curve in w/D:V/s,D space. However,
for completeness, it is worthwhile to comment that Kelly et al. [42] suggest that stiffness is dependent

on the proximity of the current vertical load to the value required to induce bearing capacity failure.

Accordingly, they recommend the more restrictive dimensionless relation:

V we Vi
= — 2.6.1
o fG(D,SuD> (2.6.15)

where V. is again used as a representative value of vertical load and fg is a dimensionless function.

2.7 Force-resultant plasticity models for on-bottom stability analyses

2.7.1 Introduction

2-DOF, on-bottom, pipe-soil force-resultant models (such as those proposed by Schotman & Stork
[30]) were not originally devised for use in a lateral buckling analysis. Instead, they were developed
to predict the pipeline’s response to hydrodynamic (wave and current) loading, and impact loading, in
shallow water. For this application, the primary objective of pipeline design is to determine whether or
not the pipeline is likely to remain in its as-laid position under a given history of wave and/or current
loading (typically, one that is representative of storm loading conditions) or impact loading (due to fishing
gear pull-over). Such an analysis has been widely termed an on-bottom stability analysis (although, it is
important to stress that the reference to stability in this context is quite distinct from Eulerian stability
in a buckling context). In an on-bottom stability analysis, if any section of the pipeline is predicted to
undergo lateral displacement of more than, say, one diameter, the pipeline is classified as ‘unstable’, and
its design is then modified — typically, by increasing its weight. Accordingly, it is not necessary for a
force-resultant model intended for use in an on-bottom stability analysis to predict the restraint afforded
by the seabed following multiple-diameter, cyclic lateral displacement (unlike one intended for use in a
lateral buckling assessment).

Previous force-resultant models which have been devised for offshore foundations (such as Martin’s
[34] model for a spud-can foundation on clay and Cassidy’s [36] model for a surface foundation on

drained sand) have typically assumed the size and shape of the yield surface to be uniquely defined by
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the vertical component of plastic displacement, w, (i.e. a unique relationship between x s and w, is
assumed). The validity of this assumption depends upon the magnitude of the horizontal component
of plastic displacement, since it dictates the extent to which the seabed remains symmetric — in respect
to both strength and surface geometry — about the vertical plane passing through the centre of the
foundation. Such an assumption is justifiable for an offshore foundation since it typically undergoes
horizontal displacements that are a small proportion of its characteristic length. Likewise, this assumption
is also reasonable for on-bottom stability analyses, since the magnitude of horizontal displacement which
is of interest to such an analysis is typically less than one diameter. By contrast, a force-resultant
model devised for use in a lateral buckling analysis is required to predict the load:displacement response
following several diameters of lateral displacement. Following horizontal displacement of this magnitude,
the formation of an asymmetric seabed surface will inevitably lead to asymmetry in the yield surface about
V axis, that is, hardening due to the plastic component of horizontal displacement, u,. Accordingly, the
assumption of a unique relationship between x g and w), is expected to be inappropriate. Nevertheless, a
review of the models of Zhang et al. [38] and Hodder & Cassidy [41] is insightful because: (i) a prediction
of the onset of lateral displacement must also be made by a model devised for applications to large-
amplitude, cyclic, lateral displacement, (ii) it provides an opportunity to introduce the structure and
operation of a 2-DOF force-resultant plasticity model (without engaging in the complexities relating to
the response following large lateral displacement) and (iii) plasticity theory is a unifying framework which
allows similarities and differences between models to be deduced (even those not originally cast within

the theory), and also aids the explanation of trends in experimental /numerical data.

2.7.2 Zhang et al.’s model

Model components

1. The yield function of Zhang et al.’s [39], f./, is given as:

H V %4

where Vj and p are hardening parameters, and ( = i/ is a constant. The yield surface, f., = 0,
is a parabola in V:H space with roots at V =V, and V = V,. This choice of yield function can be
generalised to both positive and negative H in the manner proposed by Martin [34] according to:
H \2 v 2 V2
n=[—-—) —[—=— 1——) . 2.7.2
I (u%) (VO )( vo> 272
The physical interpretations of V) and V; are then, respectively, the maximum and minimum V to

which the pipe can be subjected, for the current plastic displacement. The peak horizontal load, Hy,

occurs at V = 1/2(Vy + V;) and is given as:

Hy="201-07% (2.7.3)
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Fic. 2.15: Yield surface proposed by Zhang et al. [39] in V/vo:H/H, space.

On using Eq.2.7.3 to eliminate p from Eq.2.7.2, the expression for f,» can be straightforwardly

- ()25 (-8

BZH%B? (2.7.5)

Hence, the yield surface, f,» =0, can be plotted in V/vy:H/H, space, for all wy, as shown in Fig. 2.15

manipulated to give:

where:

(taking ¢ = —0.06, as recommended in Zhang’s thesis [37]).

2. Elastic relations.? The off-diagonal terms in the matrix in Eq.2.6.17, ky, and kp,, are taken
as zero while the leading diagonal terms, ky,, and ki, are assumed to be constant and of equal
magnitude. An absolute value of kv, = k., is specified as 8000kPa and, accordingly, this sets the
physical dimensions of the model; as such, the model is not cast in terms of dimensionless quantities
(and, hence, loses some generality).

3. Hardening laws. An approximately linear relationship was observed between V' and w in the vertical
loading tests carried out by Zhang [37] such that the following relation was assumed to fit the virgin,
vertical loading curve:

V = kyw (2.7.6)

where /;:p is the per-unit-length vertical plastic stiffness. On using the vertical elastic-plastic decom-
position law (Eq 2.5.1), and the vertical elasticity relation, V' = ky,we, to eliminate w, the following

relation is obtained:

V:(—jML—>%P (2.7.7)

ka/Ep —1
The value of V' to attain a particular value of vertical plastic penetration, w,, is the hardening

parameter, V. Hence, the model’s hardening relation is obtained by replacing V' by Vj in the above

3Zhang [37] also developed a two surface plasticity model to predict the transition from elastic to elastic-
plastic behaviour with greater realism, but further elaboration on this model is not appropriate here since the
primary focus of the thesis is the response over large lateral displacement (while the pipe is undergoing plastic
displacement).
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F1G. 2.16: Plots showing the evolution of the yield surface and the hardening laws for Zhang et al.’s [39] model.

equation. The extent of the yield surface parallel to the H axis is dependent on g which is defined
as a separate, but also (incrementally) linear function of wy, as originally proposed by Montrasio &
Nova [51]:

= fio+ p <%) ; (2.7.8)

where p and pg are two further constants. Accordingly the parameters Vj and p (or, alternatively,
Vo and Hy) are the hardening parameters of this model and the constituents of the vector, x¢. The
evolution of the yield surface with wy, is shown in Fig. 2.16a. The values assumed for the constants, ¢,
P, Ho, kv and k, which are listed on the figure are those recommended by Zhang [37]. Fig. 2.16b shows
the dependence of Hy on w, while Fig. 2.16c shows the dependence of Vj on wr/D. An approximately
linear relationship between Hy and w), exists, implying that V; predominately controls the size and
shape of the yield surface (like the offshore foundation models proposed by Martin [34] and Cassidy
[36]).

4. Flow rule. The plastic potential is given as:

H \% m \%
- (L 1-2)—C forH 2.7.
AT (VO C) < Vo) ¢ for H>0, (2.7.9)

where h{, and p are constants (the constituents of the vector, x4 for this model) and C' is a dummy

variable. Fig.2.17a is a plot of the H > 0 portion of the yield surface, in dimensionless V/vy:H/v,
space, for wo/D = 0.3 (although, Fig.2.16a shows that the yield surface grows in an approximately
self-similar manner such that the yield surface for arbitrary w,, in this space, will not differ greatly

from the wp/D = 0.3 case). g = 0 contours are superimposed on this plot, identifying three flow
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Fic. 2.17: Flow rule proposed by Zhang et al. [39], for w»/D—=0.3.

vectors. For comparative interest, the associated flow vectors for each of these three yield points are

shown. Fig.2.17b is a plot of « (as defined in Fig.2.12, page 31) against V/v,. Importantly, at the

apex of the yield surface (i.e. at V/v; = 1, H = 0), there is no unique value for «, which implies that

yield can occur along a multitude of different plastic displacement directions — not just pure vertical

penetration.

Discussion

Under the premise that Zhang et al.’s model provides a close reflection of reality (which is reasonable

owing to the agreement between experimentally derived data and the retrospective simulations of the

model presented by Zhang [37]), the following conclusions can be drawn.

1. The prediction of penetration or uplift is dependent on Vo/v. For ws/D = 0.3, uplift is predicted

for Vo/v < 9.804 while penetration is predicted for Vo/v > 9.804. Following pipe-lay, the maximum

vertical load that the pipe has experienced, in the nomenclature of this model, is V{, and, hence,

Vo/v can be identified as the over-loading ratio, R. Therefore, this model suggests that the over-

loading ratio dictates whether the penetration or uplift will occur. Analogous findings are reported

in the force-resultant plasticity models applicable to offshore foundations (see, for example, Martin
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[34], Gottardi et al. [35], Cassidy [36]). It is noteworthy that R fulfils an entirely analogous role of
the over-consolidation ratio in continuum constitutive models.

2. An associated flow rule overpredicts the magnitude of uplift predicted at high Vo/v and underpredicts
the penetration expected at low Vo/v. This highlights the well known finding that a non-associated
flow rule is required to predict the ratio of plastic displacement components for a foundation or pipe

element on sand.

Sample simulation

An algorithm was written to determine the evolution of H and w, for prescribed histories of V' and
u, in accordance with Zhang’s model. In Fig.2.18a, the results of an example simulation obtained using
this algorithm are presented (assuming the values for the model parameters listed in Fig.2.16). For the
case shown, the input to the algorithm can be segregated into three steps: (1) vertical penetration to a
depth of 0.2m (0—A), (2) vertical uplift (A—B) to reduce the vertical load to one quarter of its peak
value (such that R = Yo/v = 4), and (3) monotonic increase of u, with V held constant (B—C—D). The
load path for the initial portion of the lateral displacement step, B—C, is seen to lie within the instance
of the yield surface formed from the initial vertical penetration, 0—A. Hence, only elastic displacements
are predicted over this portion of the test and, due to the high elastic stiffness, these are of negligible
magnitude. The flow vector at the onset of yield (C) has a component parallel to the positive V' axis,
which implies that penetration is predicted and, accordingly, over C—D, the yield surface is seen to grow.
At point D, the flow vector is parallel to the H axis and, therefore, no further growth in the yield surface
is predicted. Further lateral displacement is then accompanied by no further change in the loads. In the
terminology coined by Tan [32], the ‘parallel point’ has been reached (which is the force-resultant analog
of the attainment of a critical state in a Cam-clay type continuum constitutive model).

For completeness, the above simulation was extended to consider the response to cyclic loading
between displacement limits of v = 0 and v = 4m (while maintaining the same constant V). Path
D—E in Fig.2.18b corresponds to the initial reduction in u which, owing to the assignment of a high
value for kp,, corresponds to a substantial reduction in H (such that the load point reaches the yield
surface in the positive V', negative H quadrant of the V:H plane). The symmetry of the yield surface
about H = 0 means that point D is also a parallel point and, accordingly, lateral displacement continues
without any further change in load. Therefore, although the model is of the strain hardening plasticity
type, when subjected to large-amplitude, lateral displacement cycles, it gives hysteresis cycles in u:H
space (D—E—F—G) which are similar to those expected of a perfectly plastic model (and, hence, are
inappropriate to a lateral buckling analysis). This response arises because the hardening laws have no

dependence on wu,,.
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F1G. 2.18: Simulation of horizontal displacement-controlled movement under constant V' for R = 4, as predicted
by the model proposed by Zhang et al. [39].
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Tian & Cassidy’s extension

More recently, Tian & Cassidy [53] report an attempt to generalise Zhang et al.’s model to account
for the propensity for hardening/softening due to plastic horizontal displacement, u,. This generalisation
is made by augmenting Eq. 2.7.6 (a constituent of Zhang et al.’s hardening law) to allow Vj to depend

on both u, and w, according to:

Vo =y (—wpz + /w3 +w;?) (2.7.10)

where:

*_

Wp

wp + k |y, (2.7.11)

and wy, , is the value of w, when the slope of the virgin penetration curve takes a value of k»/v2. In all
other respects, the model is the same as that described above i.e. it still assumes isotropic hardening
and, thus, predicts a yield surface which remains symmetric about the V' axis for all w, and w,. While
any attempt to move away from models with hardening laws which depend solely on w, is an advance,
this augmentation is thought to be overly simplistic to allow for realistic load:displacement predictions,
especially when applied to cases involving multiple diameter, cyclic lateral loading (i.e. for lateral

buckling analyses).

2.7.3 Hodder & Cassidy’s model

Hodder & Cassidy’s [41] model was calibrated against a series of centrifuge tests on undrained clay.
Therefore, it is of interest to contrast its components with those of Zhang et al.’s model to assess the
influence of soil type (undrained clay as opposed to drained carbonate sand) on the load:displacement

response of an on-bottom pipe element.

Model components

1. The yield function assumed by Hodder & Cassidy is given as:

H 2 174 261 Vv 2032
- () (5-9" (- 5)

where (37 and [y are constants and:

B1+pP2
By = LT P2) (2.7.13)

BB (1=
If 1 = B2 = 1, this choice for the yield function is the same as that used by Zhang et al., as given by

Eq.2.7.4. The parameters 3; and (3 fulfil two roles: the first to shift the yield surface’s vertical axis
of symmetry from V = V/2 to V = (32V0/(8:+8.), and the second to round the extremities of the yield
surface at V' = V; and V =V} (this is advantageous to the numerical implementation of the model
since the derivatives of f with respect to V and H are then defined for all V' and H). This approach

was originally proposed by Martin [34] in his model for spud-can foundations on undrained clay (and,
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FiG. 2.19: Plot showing the evolution of the yield surface and hardening laws for Hodder & Cassidy’s [41] model.

later, also used by Cassidy [54]). Indeed, the yield function assumed in Martin’s spud-can foundation
model is the same as Eq.2.7.12 if ( is taken as zero.

2. Elasticity. This model is formulated in terms of dimensionless parameters and, hence, Eq.2.6.17 is
used for the elasticity relations. The recommended values for ky,, and kp, are, respectively, 200 and
185. Like Zhang et al.’s model, the off-diagonal terms in the stiffness matrix are taken as zero.

3. Hardening laws. The hardening laws of Hodder & Cassidy’s model are very similar to those of
Zhang et al.’s model. w), is again assumed to define the size of the yield surface, however, three
separate relationships are used to specify the dependence of Vy, Hy and V; (hence, ¢) on w,. For
brevity, the form of these relationships is not repeated here but, instead, a plot of the evolution of
the yield surface with w), is shown in Fig. 2.19.

4. Flow rule. A non-associated flow rule was again assumed, with plastic potential given as:

H 14 Bs 14 Ba
_ g (Y 1L 2.7.14
0= =i (7<) (1-37) (2.7.14)

where (O3 and (4 are two further constants and 34 is found by replacing all 5; and (s terms in
Eq.2.7.13 by (3 and [34 respectively. Vj is a dummy variable, whose value is chosen to give g = 0 for
the current (V, H) load point. A comparison between Eqs 2.7.9 and 2.7.14 reveals that the plastic
potential for this model is very similar to that of Zhang et al.’s model.

Fig. 2.20 shows the variation of « over the yield surface for w»/D = 0.3 (and, thus, is the analogous
plot to Fig.2.17b for this model). Also shown in Fig. 2.20 is the prediction of « if an associated
flow rule is assumed. This plot identifies that the discrepancy between the predictions obtained

from associated and non-associated flow rules is not critical. Similar findings have been reported for
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Fic. 2.20: Variation of o with position on yield surface for Hodder & Cassidy’s [41] model, for w»/p = 0.3.

investigations into offshore foundations on undrained clay; for example, Martin [34] found a flow rule
deviating only slightly from associated flow was sufficient to obtain agreement with experimentally
derived data. Fig.2.20 identifies that for w»/D = 0.3, R = W/v > 3.13, uplift is predicted, while for

R =V/v < 3.13, penetration is predicted.

Discussion

The models proposed by Zhang et al. and Hodder & Cassidy are, in general, very similar. The only
substantive difference concerns the choice of values for the parameters specifying the flow rule. Non-
association is far more prominent for drained sand than undrained clay and, hence, the values for the
parameters specifying the flow rule for a model applicable to drained sand are more critical. A similarity
between two models is that the prediction of uplift or penetration is dependent solely on the overloading
ratio, R. However, there appears to be some disagreement in the literature on this topic since, more
recently, Bruton et al. [55], Bruton & Carr [56] and Randolph & White [57] attest that a ‘heavy’ pipe
(defined by Bruton et al. [55] as one with V/s,D >« 2.5) experiences penetration whereas a ‘light” pipe
(defined by Bruton et al. [55] as one with V/s,D <« 1.5) experiences uplift. There is a substantial body of
experimental data (cf. Martin [34], Gottardi et al. [35], Cassidy [54], Byrne [58]) to show that R dictates
the direction of plastic displacement of a foundation (on both undrained clay and drained sand). However,
in foundation model testing, the horizontal displacement amplitudes are typically small fractions of the
foundation’s characteristic length (indeed, the tests carried out by Zhang et al. and Hodder & Cassidy
also did not involve horizontal movement of multiple diameter amplitude). Accordingly, it is plausible
that the influence of the group, V/s,D, on the tendency for upward or downward movement becomes
significant only once lateral displacement of more than, say, 1D has taken place. If so, this response is
unsurprising since the stress field accompanying penetration is expected to have a finite extent, such that
a soil element located at a point sufficiently remote from the embedment site is likely to be unaffected

by the prior history of vertical loading during penetration. For the formulation a force-resultant model
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devised for pipes undergoing multiple-diameter lateral displacement on undrained clay, it would appear

likely therefore that is necessary to account for the influence of both R and V/s,D in an appropriate way.

2.7.4 Summary

Force-resultant plasticity models applicable to on-bottom stability analyses are similar to those deve-
loped previously for applications to offshore foundations. The development of models of this type is now
very much a mature research topic and several independent investigations have shown that these models
can accurately replicate experimentally derived load:displacement paths. Importantly, these models are
capable of predicting the influence of prior vertical loading on the lateral response, unlike the 1-DOF
models used by industry. A force-resultant model applicable to a lateral buckling analysis requires the
extension of those models used in on-bottom stability analyses to account for the influence of large-
amplitude, cyclic lateral displacement. Specifically, a set of hardening laws are required to allow the size

and shape of the yield surface to depend, in an appropriate way, on both w, and u,,.

2.8 SAFEBUCK JIP

2.8.1 Background

A Joint Industry Project (JIP) entitled SAFEBUCK was conceived in 2004 with the aim of devising
guidelines to aid the design of on-bottom pipelines such that they buckle laterally in a controlled manner
(cf. the discussion on lateral buckling management in §1.1.5). Whilst the work in SAFEBUCK has
primarily focused on undrained clay, which contrasts with the work in this thesis on drained sand, the
results provide valuable, qualitative insight into on-bottom soil-structure interaction. The SAFEBUCK

project has, thus far, been carried out in three phases.

e The Phase I research was primarily carried out at the University of Cambridge, much of which is
published in Cheuk’s thesis [59] and the subsequent papers of Bruton et al. [6] and Cheuk et al.
[60]. The focus of the Phase I work was plane strain physical testing on clay at both full-scale and
in a centrifuge. Based on the data generated from these tests, a force-resultant model applicable to
large-amplitude lateral displacement was later proposed by White & Cheuk [61].

e Part of the Phase II research was again carried out at the University of Cambridge (primarily focusing
on the axial load:displacement relationship), but this was also teamed with centrifuge testing carried
out at the University of Western Australia. This phase also involved the development of the first 2-DOF
model applicable to large-amplitude, lateral displacement on undrained clay. This model, developed
by Martin [62]| at the University of Oxford, was successfully implemented into a FE analysis of the
type currently used by industry. The full outcomes of the Phase II work have not yet been released

into the public domain, and so only a broad overview is presented here.
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e The Phase III research is ongoing and, accordingly, its findings are not reported here. The scope of
the Phase ITT work involved further centrifuge testing (again, at the University of Western Australia)

as well as more rigorous development of a 2-DOF force-resultant model at the University of Oxford.

2.8.2 Plane strain experiments

Fig.2.21 contains two plots which are duplicated from Cheuk et al. [60] and show the results of a
typical test carried out as part of their plane strain testing programme. The upper plot is a record
of the horizontal load:displacement (u/pD:H) response, while the lower plot shows the recorded pipe
trajectory in ¢/D:w/D space. This test was carried out using a 0.283m diameter pipe and consisted of four,
successive stages: (1) vertical penetration to a depth of approximately 0.081D, (2) lateral displacement
to u = 7.5D (labelled as sweep 1 on the plots), (3) cyclic lateral displacement, in which the pipe
was moved back-and-forth between horizontal displacement limits of 3D and 7.5D (sweeps 2 — 12),
and (4) a final lateral displacement cycle of larger amplitude, in which the pipe was moved outward to
u = 10D (sweep 13) and then returned to the site of initial vertical penetration (sweep 14). During lateral
displacement, the vertical load was intended to remain constant although, due to various inadequacies in
the experimental set-up, Cheuk et al. [60] acknowledge that some variation in the vertical load level was
likely. Unfortunately, however, since the vertical load was not recorded, its precise variation is unknown.
For this reason — together with the fact that the sample preparation gave rise to a rather unusual, highly
non-linear variation of strength with depth — the generality of the findings of the testing programme is
somewhat limited. Nevertheless, the following commentary on the broad, qualitative pattern of behaviour

is insightful.

e Sweep 1: The v/D:H plot suggests that a critical horizontal load must be reached in order to initiate
lateral displacement. However, once lateral displacement is underway, the horizontal load is then seen
to reduce; over a—b, the drop in the horizontal load is, perhaps, due to suction release, whereas from
b—c, the drop is likely to relate to the gain in the pipe’s elevation (and, hence the reduction in passive
resistance). Over the remainder of the first sweep, the horizontal load is seen to increase gradually,
which is likely to be due to berm accretion.

e Sweeps 2-12: For these sweeps, the horizontal load:displacement path is seen to plot along a well-defined
hysteresis loop. H increased during rightward sweeps, while its absolute value decreased (marginally)
during leftward ones. It is noticeable that the absolute value of H increased more substantially towards
the end of each sweep, and this is likely to be due to the greater passive resistance encountered on
encroaching the berms formed at the cycle’s lateral displacement extremities. Following each change in
the direction of lateral displacement, the pipe’s trajectory is characterized by a substantial increase in
penetration (although, in part, this might be an artifice of the procedure which was used to disconnect

and, subsequently, reconnect the loading rig’s connecting arm in order to reverse its direction of travel
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Fic. 2.21: Test data of cyclic, multiple pipe diameter lateral displacement, from Cheuk et al. [60].

— see Cheuk [59] for further details). Once lateral displacement was underway, the trajectory of the
pipe remained approximately horizontal.

e Sweep 13-14: On extending the magnitude of lateral displacement beyond that of the previous cycles,
H increased markedly. Undoubtedly, this response was due to the necessity to plough through the

substantial berms formed at the lateral displacement extremities.

The experiments carried out for SAFEBUCK indicate that the applied (V, H) loading dictates the pipe’s
initial trajectory which, in turn, dictates the evolution of the seabed surface profile. However, a feedback
mechanism exists in the sense that the evolution of the seabed surface profile has a strong bearing on
the current (V, H) load capacity which, in turn, influences the subsequent pipe trajectory (in particular,
the tendency to plough through or rise up over berms, and the corresponding variation in lateral re-
sistance). In particular, the experimental results suggest that the interdependence between the vertical
and lateral DOFs is sufficiently strong that the concept of ‘berm resistance’ as a unique parameter (that
is, one de-coupled from the vertical plastic displacement) is probably not appropriate. An important
finding to emerge from the SAFEBUCK investigation is that the pipe’s trajectory over the first lateral
displacement cycle appears to play an influential role in dictating the evolution of the seabed surface
following subsequent cycles. Accordingly, accounting for the influence of R in the first cycle is important
to attain a realistic prediction of the evolution of the seabed surface and, hence, a realistic prediction of

the load:displacement response.
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In summary, the results generated from the SAFEBUCK experimental work suggest that a model to
predict the load:displacement response of an on-bottom pipe should be framed within plasticity theory

(or a variant thereof) since:

i. a rational prediction of the load:displacement response can only be made if the response in the
vertical DOF is related to the response in the lateral DOF, and
ii. a set of internal variables are required to keep a record of the history of prior movements which

influence the seabed surface profile and, hence, its (V, H) load capacity.

However, it is clear that the hardening laws are required to be significantly more complex than those of
the models reviewed in §2.7.2. Specifically, they must be capable of capturing the influence of the prior

history of displacements which have brought the pipe to its current position.

2.8.3 Force-resultant model development

In Bruton et al.’s [6] discussion on the Phase I experimental findings, it is deemed to be convenient
to separate the large-amplitude, lateral load:displacement response into three regimes: (i) embedment,
(ii) break-out, and (iii) residual resistance. The embedment regime concerns penetration under purely
vertical loading, the break-out regime concerns the initiation of lateral displacement following penetra-
tion (the path labelled 0—a on the plot in Fig.2.21), and the residual resistance regime concerns the
response following large-amplitude, lateral displacement (i.e. the response over the first sweep, as label-
led on the plots in Fig.2.21). For each of these three regimes, Bruton et al. [6] proposed a relation to
predict the loading to which a pipe element must be subjected to initiate either vertical penetration or
lateral displacement. In the terminology of force-resultant plasticity theory, these relations identify the
combinations of V' and H to which the pipe must be subjected to cause yield. White & Cheuk [61] later
proposed a further series of relations for a fourth (iv) regime to account for the change in the horizontal
load capacity due to the merger of existing berm with one that had formed as a consequence of prior
lateral displacement. In this section, each of these relations will be discussed, and interpreted in the

context of force-resultant plasticity theory.

Regime (i): Embedment

For the embedment regime, the following relation is proposed to predict the vertical load, V', to

obtain a given vertical penetration, w:

<SZD>2 s <%> , (2.8.1)

where ki is a dimensionless scalar which is reported to depend on the soil sensitivity. By neglecting

the elastic component of w (such that w = w,), this relation can be re-written in terms of the notation

(;3))2 - (%) . (2.8.2)

introduced in §2.7.2 as:
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Regime (ii): Break-out

For the breakout regime, the following relation is proposed to predict the combination of V and H

to which the pipe must be subjected to initiate lateral displacement:

<st> == <k2 <SZD> ks <%)> ) (2.8.3)

where ko = 1/5, ks = 34/7'D/s, and, again, the elastic component of w has been assumed here to be

negligible. The + sign is supplemented here (i.e. it is not present in the original presentation of the
work) under the premise that the seabed is initially symmetric with regard to both surface geometry

and strength about the vertical plane passing through the pipe centre. Substitution of Eq. 2.8.2 into Eq.

<st> = (kz <st> +Z_j <3i/3)>2> ’ (2.8.4)

which is an incrementally linear (i.e. a Coulomb friction-like) relationship between V/s,D and H/s,D.

2.8.3 gives:

This relationship is plotted schematically for various /s, D in Fig.2.22a. The threshold for vertical
displacement (as predicted by Eq. 2.8.2) is also shown, again for various Y/s,D. The surface formed by
the intersection of these lines, for the same wp/D (and, hence, the same Vo/s,D), is the instance of the

yield surface implied in Bruton et al.’s paper [6] following penetration.

Regime (iii): Residual resistance

For lateral displacement within the residual resistance regime, Bruton et al. [6] proposed the following

linear relationship between V/s,D and /s, D:
H Vv
=tk 2.8.
<3uD> 4<3uD>’ (285)

ks =1—0.65(1 — exp (su/2y/D)) . (2.8.6)

where:

The + sign in Eq. 2.8.5 has also been supplemented here, although, it is acknowledged that the validity of
its inclusion is dependent upon the magnitude of lateral displacement which occurs between the breakout
and residual regimes. It is possible that this distance could be sufficiently large that the seabed no longer
retains symmetry about the vertical plane passing through the pipe centre (with regard to both surface
geometry and strength), such that the response to positive and negative H differ.

A plot of the relationship between V/s,D and H/s,D given by Eq. 2.8.5 is shown in Fig.2.22b. This
linear load path could be interpreted as a portion of yield surface for lateral displacement within the
residual regime. However, since no term in Eq. 2.8.5 depends on a plastic displacement component, a
more rational interpretation is that it is a line in V/s,D:H/s, D load space which passes through the family
of yield surfaces for various w,. For example, the predictions of this model could be unified, to some
extent, with those of Hodder & Cassidy [41] if this line is interpreted as a linear approximation to the

curve passing through the parallel points on the family of yield surfaces for various wy, (i.e. the circular
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Fic. 2.22: Instances of the yield surface, in V/s,D:H/s,D space, for the various regimes of pipe movement
considered by White & Cheuk [61].

markers on the plot in Fig.2.19A). Under this premise, this line fulfils an analogous role to the critical
state line, ¢ = Mp’, in the Cam-clay continuum constitutive model.
A comparison between Figs 2.22a and 2.22b identifies that, over the transition from the breakout to

residual regimes, there is a critical value for V/v;, given by:

Vo ko Vo
Vo o ki (ks —1/5) <$uD> ’ 28

above which hardening (increase in H with an increase in u) is predicted, and below which softening

(decrease in H with an increase in u) is predicted. Eq. 2.8.7 identifies that this critical V/v, value increases
linearly with Vj (and, hence, via Eq. 2.8.2, increases with the square root of wy). The identification of a
critical R = Vo/v segregating softening from hardening (in the sense of the u:H response) is a similarity

between this model and those cast within plasticity theory, such as those discussed in §2.7.2.
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Fic. 2.23: Hardening law framework for regime (iv) of the model proposed by White & Cheuk [61].
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F1G. 2.24: Definitions of the ploughing depth, ¢, and berm area, Apepp,, during lateral displacement, as used in
the model proposed by White & Cheuk [61].

Regime (iv): Hardening due to berm merger

A relation to predict the evolution of the horizontal load capacity due to the interaction with a berm
is not explicitly stated by Bruton et al. [6]. However, it is implied that the influence of the berm could

be modelled by an equation of the form:

(3)-0(55)

where A is a prefix to denote the change in H, relative to its value predicted by Eq. 2.8.5 (for a given V);

U is a function of the dimensionless groups v»/D and V/s,D. In the context of plasticity theory, Eq. 2.8.8
is a hardening law and, as discussed by White & Cheuk [61], this hardening law is proposed to consist

of three stages, which are shown schematically in Fig. 2.23.

1. The first stage is the empirical power law correlation:

/ vV o\ ke
5:45<5D> (2.8.9)

to predict the ploughing depth, ¢ (that is, the height of the free surface ahead of the pipe, relative to

the pipe invert — see Fig.2.24) from the group, V/s,D. ks and kg are constants, recommended to take
values of 0.015 and 2.3, respectively. The premise underlying this correlation is that a ‘heavy’ pipe
(that is, one with high V/s, D) will undergo penetration during lateral displacement while a ‘light’ pipe
(that is, one with low V/s,D) will undergo uplift, such that, the ‘heavier’ the pipe, the higher ¢.

2. The second stage is the update in the berm area:
Aperm < Averm + AAperm (2810)

where, as labelled in the figure, AApe,,, is approximated as tAw (an estimate to the area of soil
displaced by the movement of the pipe through the berm).
3. The third stage is the calculation of AH/s,D from Ape,,, according to the following empirical power

law relation:

kg
AH:m<&mﬂ . (2.8.11)
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Values for k7 and kg are recommended as 1.0 and 0.5 respectively.

Since AH/s, D depends on V/s,D, the yield surface in V/s,D:H/s,D space, over V/s,D < ki (v/D), ceases
to be linear, as indicated in Fig.2.22c. Hence, in the berm accretion phase, the relationship between

AH/s,p and V/s,D deviates from that of Coulomb friction.

Discussion

This model represents an advance on those currently used by industry. In particular, it is noteworthy
that the tendency for softening or hardening at breakout (in respect to the u:H relationship) is dependent
on R =W/v (even though the vertical displacement, w, is not accounted for explicitly). However, there

are limitations to this model.

1. The shape of the instance of the yield surface following vertical penetration differs considerably from
that obtained by meticulous calibration against experimentally-derived data (compare the shapes of
the yield surfaces in V/s,D:H/s,D space in Figs 2.19 and 2.22a). If the vertical load was not to change
substantially during lateral movements, then it could be argued that the exact shape of the yield
locus is not critical. However, for certain loading scenarios, it is likely that some sections of pipe will
penetrate whilst others undergo uplift. Accordingly, vertical load variations are then likely, and need
to be accounted for approriately.

2. If the model were to be generalised to account explicitly for the influence of vertical penetration,
then a non-associated flow rule would be required — otherwise uplift would always accompany lateral
displacement (see Fig.2.22a). This is in contradiction to the widely-known finding that an associated
flow rule, or a very close approximation thereof, is applicable to undrained clay.

3. As discussed in §2.7.3, experimental evidence suggests that the direction of vertical plastic displace-
ment is influenced strongly by the overloading ratio, R, as well as V/s,D. Hence, a unique correlation
to obtain the berm area, Apep, from V/s,D is unlikely to be valid for all u. Furthermore, Apeyy, is, in
all likelihood, more reliably predicted by the displacement trajectory which has brought the pipe to
its current position, rather than either V/s,D or R.

4. The model implies that a unique AH exists for a berm of area, Ape;,. This is thought to be overly
simplistic since the horizontal load capacity of a berm is likely to be a strong function of the vertical
component of plastic displacement i.e. if the pipe passes over the berm, then the horizontal capacity
will be significantly lower than if the pipe undergoes penetration whilst displacing laterally into the

berm.

Each of the limitations listed above arises because the model is cast in just the lateral DOF. On the one
hand, the use of a single DOF model leads to a simplistic and accessible model but, on the other hand,
the inherent coupling between the vertical and lateral DOFs will inevitably prevent realistic predictions

and lead to inconsistencies of the type outlined above.
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Improved force-resultant model

The force-resultant model, developed for undrained clay, for Phase IT of the SAFEBUCK JIP (Martin
[62]) explicitly accounts for the evolution of both the vertical and horizontal displacement components,
w and u. This allows the geometry of seabed surface to be predicted on a more rational basis and
also facilitates a more realistic prediction of the lateral restraint (since the influence of the direction
of plastic displacement — in particular, the tendency for uplift or penetration — can be accounted for
appropriately). This model is cast within plasticity theory, and represents the first attempt to generalise
the well-established force-resultant plasticity model approach in order to account for the influence of the
evolution of the seabed surface geometry due to large-amplitude, cyclic lateral displacement.

The key novelty of the model is the proposed hardening law (i.e. the relationship used to deduce the
hardening parameters, x ¢, from the plastic displacement components, w, and u,). Experimental findings
suggest that the current instance of the V:H yield surface depends on the history of plastic displacement
which has brought the pipe to its current position (rather than simply the current plastic displacement).
This implies that path dependent hardening laws are required. To account for this path dependence in
a manner that allows for efficient calibration, the model makes use of the following assumptions. Firstly,
the seabed is assumed to deform under constant volume into a pre-defined geometry, characterized by
two scalar parameters. It is then assumed that these scalar parameters (and a constant soil strength
parameter) can be correlated directly to the model’s hardening parameters.

There is a clear similarity between this hardening law framework and the one assumed by White &
Cheuk (Fig.2.23). Both assume that the cumulative effect of the prior history of plastic displacement can
be adequately encapsulated by a characterization of the current, local seabed surface geometry. However,
the key difference between the two models is that a V:H yield surface is related to current values of the
geometric parameters in Martin’s model whereas a H yield point is related to the geometric parameters
in White & Cheuk’s model. The distinction is a consequence of differing number of DOFs in which the
two models are cast.

This model represents a significant advance on those reviewed in the preceding sections. In essence,
it inherits the positive traits of both White & Cheuk’s model (which accounts for the behaviour over
large-amplitude, lateral displacement) and the small-amplitude 2-DOF models reviewed in §2.7.2 (which

account for the inherent interdependence between the vertical and lateral DOFs).

2.9 Other relevant research

2.9.1 Large-deformation finite element (LDFE) analyses
As discussed in §1.2.1, the use of macro-elements within an FE based structural analysis is the most
widely used method to predict the load:displacement response of an on-bottom pipeline. However, an

alternative approach is to model the entirety of the three-dimensional problem using the large-deformation
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(a) Plane strain. (b) 3-D.
Fic. 2.25: Continuum FE analyses, after Yu & Konuk [16].

Region of self-supported seabed

Fic. 2.26: Predicted seabed geometry following cyclic, lateral displacement, after Konuk & Yu [63].

finite element (LDFE) method. Analyses of this type are reported by Yu & Konuk [16] (see also Konuk &
Yu [63]). In their investigation — which was carried out using the Eulerian Lagrangian explicit FE code,
LS-DYNA [64] — both the seabed and the pipeline were modelled as continua, divided into finite elements
in three dimensional space. A constitutive model assuming a cohesive (¢’ > 0), frictional (¢’ > 0), capped
yield criterion was used, together with a fully rough pipe/soil interface. Their investigation was divided
into two strands. The first, as shown in Fig. 2.25a, consisted of the movement a short, rigid pipe section
into a seabed or prismatic dimensions held between a pair of rigid boundaries i.e. a plane strain continuum
simulation. The second, as shown in Fig.2.25b, consisted of the analysis of an axially loaded pipeline in
three-dimensional space.

For each plane strain analysis, the pipe was subjected to three lateral displacement cycles of 2.5D
amplitude under constant vertical load. The assignment of a greater seabed strength (higher values of
¢’ and /) was found to give rise to less penetration per lateral displacement cycle. A second, though
related, finding concerns the shape of the hysteresis loops in u: H space; the assignment of a lower seabed
strength was found to bring about an increase in the peak horizontal load per lateral displacement cycle.
This is most likely to be due to the increase in embedment depth — and, hence, passive resistance — with
each cycle.

Each three-dimensional analysis commenced with an initially snaked pipeline, lying within the ho-
rizontal plane immediately above the seabed surface. Gravity loading was applied to simulate the si-
multaneous embedment of the whole pipeline into the seabed. Displacement-controlled, compressive,
cyclic loading was then applied to simulate the monotonic increase, and subsequent decrease, of pres-
sure/temperature. Only a sample set of analyses were carried out and, hence, no generic findings are

presented.
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The findings of this investigation would carry greater weight if the results of validation analyses
were also presented e.g. to confirm consistency with experimental data or, otherwise, agreement with
solutions formally established to be exact (in the sense that they comply with the bound theorems
of plasticity). Indeed, the realism of Yu & Konuk’s simulations are called into question when figures
such as Fig.2.26, which show their predicted seabed surfaces, are examined. Fig.2.26 shows the soil (i)
self-supporting itself (which is counter-intuitive, given that a soft clay was modelled in this simulation)
and (ii) dilating to such an extent that the pipe is predicted to undergo net upward movement. In
addition to these spurious predictions, it is also noteworthy that, for the analyses in which the pipeline
was subjected to axial loading, the number of elements in contact with the each pipe cross-section was
very low (approximately, 20). Since the load:displacement response is likely to be highly sensitive to
the element width in the vicinity of the interface between the pipe and the seabed free surface, it is
questionable whether sufficient resolution was used to attain mesh objectivity. However, the primary
objection of this type of numerical analysis is its very high computational cost. While run-times are
not quoted in either paper, they are likely to be extremely high due to the large number of degrees of
freedom in each analysis. In design practice, it is commonplace to consider a range of pipe-lay geometries,
temperature profiles, histories of pipe-lay loading and, therefore, many tens, if not, hundreds of analyses
are typically carried out. Consequently, this method would require substantial computational resources
to obtain the required data. However, Yu & Konuk state that their approach, though computationally
burdensome, is essential for reliable lateral buckling predictions since the development of a force-resultant
model capable of accounting for the varied behaviour observed in their plane strain tests (in particular,

the path dependence) is unfeasible. Specifically, they attest:

“a path dependent generalized Coulomb function [i.e. a force-resultant model|, can be for-
mulated... ...However, to place such a function on a rational basis and to prove that the
resulting Winkler model [i.e. FE analysis using 1-D bar elements and the macro-element
approach| can reasonably approximate the lateral buckling problems are insurmountable

tasks.”

Here, although it is acknowledged that the development of a force-resultant model capable of accounting
for the evolution of the local seabed geometry is an ambitious task, it is, nevertheless, thought to be
surmountable.

In discussing the LDFE method, it is also important to comment on Wang et al.’s [65] investi-
gation. Wang et al. report numerical analyses using plane strain finite elements (as opposed to the
three-dimensional, prismatic domain approach used by Yu & Konuk). In their work, a constitutive mo-
del assuming Tresca’s yield criterion was assumed, together with a strain-softening relation for the yield
load, s,. As will be discussed in Chapter 4, the inclusion of strain softening in a continuum setting leads

to ill-posed problems which lack unique solutions (indeed, the localized failure mechanisms depicted in



Chapter 2: Background 61

F1G. 2.27: Domain of a typical DEM simulation, Utili [67].

Wang et al.’s paper suggest that such ill-posedness was evident in their work). Despite this, for the ap-
propriate selection of values for the material strength parameters, solutions attained from Wang et al.’s
numerical analyses are found to agree reasonably with experimental data. While it is clearly valuable
to develop numerical methods to replicate the large-amplitude plane strain movement of a pipe element,
the question as to how the results of such analyses can be used to calibrate a force-resultant constitutive
model remains largely unaddressed. Although the LDFE method is not considered further in the thesis,
it is acknowledged that the ability to suspend an analysis mid-way through a lateral displacement cycle
and explore the combined (V, H) load capacity for that position could be highly beneficial with regard

to the efficient calibration of a force-resultant model.

2.9.2 Plane strain DEM

Recently, at the University of Oxford, research has been carried out to attempt to determine the
load:displacement response of a plane strain pipe section using the discrete element method (DEM); see
Arnone [66], for example. The DEM is well suited to the analysis of on-bottom soil-pipe interaction on
sand since large-amplitude movement of sand grains during lateral displacement is naturally accommo-
dated (in contrast to the LDFE method which requires bespoke algorithms to adapt the mesh between
pseudo time steps and then project the updated solution from a previous time-step onto the updated
mesh). A second advantage of DEM is its ability to accommodate discontinuities (such as shear bands)
which are troublesome for any continuum based numerical method. However, the DEM is not yet a
mature research topic, and suffers from the substantial draw-back that run-times are, at present, usually
very high. Accordingly, the objectives of current investigations have, thus far, been restricted to attempts
to match plane strain simulations to experimentally derived data, without any regard for the formulation
of a force-resultant model to be used in a structural analysis of the pipeline as a whole. However, like the
LDFE approach, the notion of suspending an analysis mid-way through a lateral displacement cycle to
explore the combined (V, H) load capacity for the current position is an attractive feature of this method

and, accordingly, it holds promise for future investigations.
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2.10 Loading rate for granular saturated materials

If an on-bottom pipeline undergoes lateral buckling and, hence, snap-through behaviour, it is concei-
vable that the lateral displacement rate, at a particular axial position, might be sufficiently high so as to
induce a partially drained response (that is, excess pore pressures might accumulate within the seabed
surrounding the rapidly moving pipeline section). Conversely, for bending, the rate of lateral displace-
ment is limited by the rate of heat transfer and, hence, a drained response is more likely (although, since
the pressure increase is applied very rapidly, it is conceivable that the rate of lateral displacement might
initially be high enough to prevent the full dissipation of excess pore pressure). Given the propensity for
partial drainage, it is insightful to provide some brief discussion on the expected influence of different
drainage conditions on the load:displacement response.

Mangal [68] (see also Mangal & Houlsby [69]) report the findings of an experimental testing pro-
gramme which was undertaken to investigate the influence of loading rate on the load:displacement
response of a shallow foundation. Their test results suggest that an increase in loading rate leads to:
(i) an increase in stiffness, and (ii) an increase in the combined vertical, horizontal and moment load
capacity afforded by the seabed (i.e. the yield surface deduced from partially drained tests was found to
be larger than that deduced from the fully drained ones). Concerning the second of these two findings,
Mangal & Houlsby [69] report that, for tests carried out using a 150mm diameter circular, flat footing
and a displacement rate of 0.4mm/s, the size of the yield surface was approximately 12% greater than
that deduced from their tests carried out under fully drained conditions. Accordingly, the results of this
investigation suggest that, although increasing the loading rate leads to an increase in the size of the
yield surface, the magnitude of this increase is relatively modest. Accordingly, a force-resultant model
calibrated from data derived from fully drained tests (e.g. using dry sand) would be expected to replicate
the load:displacement response of a partially drained test to a reasonable degree of accuracy. However,
there is an important caveat to this statement. If the excess pore pressures are sufficient to bring about
liquefaction (such that the seabed loses all load carrying capacity), then the influence of loading rate on
the load:displacement response would then be expected to be quite substantial. Whether or not pockets
of liquefied soil emerge in the field is uncertain, but the scope of the work reported here does not extend
to include the propensity for liquefaction. Indeed, all of the numerical analyses which are reported in
the thesis make use of quasi-static loading, and all experiments are carried out using dry sand. Accor-
dingly, the results are applicable to drained sand but, from the above discussion, are also expected to

approximate the response under partially drained conditions (providing no liquefaction is evident).
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2.11 The proposed force-resultant model

2.11.1 Force-resultant plasticity
Based on the literature reviewed in the preceding sections, the following were identified as two essential

requirements of a force-resultant constitutive model for use in a lateral buckling analysis.

1. The model was required to account explicitly for the variation of the loads and displacements in both
the vertical and horizontal DOFs (and to account for their interdependence); i.e. the model was
required to relate the displacement components, w and u, to the load components, V' and H.

2. The model was required to account for the path dependence which is inherent to the load:displacement
response, which is to say, the prediction of the seabed’s current (V, H) load capacity was required to
take into account the prior history of displacement which had brought the pipe to its current position,

and the corresponding evolution of the seabed geometry.

The need to account for multi-dimensional loading and to maintain a record of prior behaviour hinted
strongly towards the development of a force-resultant plasticity model. Accordingly, at the outset of the
research, the development and calibration of such a model — specifically, a single yield surface plasticity
model of the strain-hardening type — was attempted. The remainder of this chapter is devoted to an
outline of the proposed model, focusing upon the hardening laws. Further details are also provided on

the scheme of work which was proposed to calibrate the model.

2.11.2 Hardening laws

The yield function, flow rule and elasticity relations were envisaged to be similar — conceptually, at
least — to those used in the force-resultant plasticity models reviewed in §2.7.2. On the other hand, in
order to account for the influence of the evolving seabed surface geometry, a novel formulation for the
hardening laws was sought. A flow chart depicting the framework of the proposed hardening law is shown

in Fig. 2.28, and an explanation of each of its three steps is provided in the following.

Step 1

Consider Fig.2.29, the left hand side of which is a schematic representation of a slice parallel to the
x:z plane containing the pipe’s cross-section and the seabed surface within the immediate vicinity. On
the right hand side of this figure, discrete approximations to the pipe and seabed are shown. The seabed
is seen to be divided into N columns, each of width, ds, while the pipe is seen to be divided into M
columns, also of width, ds. By storing the height of each seabed column (relative to a given datum) in
the array, S, an approximate record of the seabed surface can be held in a form which is amenable to
numerical implementation. Likewise, by storing the height of the lower surface of each pipe column (also,
relative to the given datum) in the array, p, an approximate record of the position of the lower surface

of the pipe can be held in a similar form to that of the seabed.
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F1G. 2.28: Flow chart depicting the framework of the hardening law for the proposed force-resultant model.

The inputs to the first step of the hardening law, as indicated on the flow chart, are the discrete data
structures for the seabed and pipe, S and p, and the increments in the plastic displacement components,
Aw,, and Au,. The current position of the discrete representation of the pipe is set by the current values
of the plastic displacement components, w, and u,. For each call to the hardening law, the entries of
p are first updated so as to account for the change in the pipe’s plastic displacement. Then, a series of
heuristics — full details of which are provided in Chapter 6 — are used to update the heights of the seabed
columns (i.e. the entries of S) in response to the movement of the pipe. Accordingly, the first step of

hardening law handles the key mapping between plastic displacement and seabed surface geometry.

Step 2
The input to the second step of the hardening law is the updated seabed surface height array, S,

while the outputs are ¢; and t5. ¢1 is the average seabed surface height (relative to the pipe invert) over a
specified length ahead of the pipe (i.e. over x > u,) while ¢ is the average seabed surface height (again,
relative to the pipe invert) behind of the pipe (i.e. over z < uy,). t; and ¢y are used to characterize the
seabed surface geometry in the immediate vicinity of the pipe, and their current values are determined

straightforwardly from the entries of S.

Step 3

The final step of the hardening law is a look-up table to determine the set of hardening parameters, x ,
from t1, to and the strength parameters, ¢’ and §. Accordingly, ¢; and to can be viewed as intermediary
hardening parameters since they evolve with plastic displacement and are correlated to the size and shape

of the V:H yield surface.

The three steps outlined above provide the required mapping between a plastic displacement in-
crement and the updated values for the hardening parameters. There are several advantages of this

formulation for the hardening law; in particular, the following are noteworthy.

1. The seabed surface is not constrained to deform into a predetermined geometry. Rather, the above
procedure to store and update the seabed surface allows for its quite generic evolution. In particular,
displacement paths which give rise to: (i) the merger of two or more berms, (ii) arbitrary reversals in
the direction of lateral displacement, and (iii) the disengagement of the pipe from the seabed surface

can all be handled without the inclusion of specialized procedures.
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Fic. 2.29: Schematic showing discrete approximations to the seabed surface and pipe, as used in the hardening

law of the proposed force-resultant model.

2. A common set of heuristics are used to update the seabed surface geometry for all w,. This is in
contrast to the models devised for SAFEBUCK, which segregate lateral displacement into various
regimes (vertical penetration, breakout, residual resistance, berm merger). Accordingly, for the model
proposed here, it is not necessary to devise specialized modeling strategies to handle the transition
between two regimes. Furthermore, predictions of small-amplitude, cyclic lateral displacement (which
is expected at the extremities of a buckle) can be handled with equal ease to large-amplitude, cyclic
lateral displacement (which is expected at the crown of a buckle).

3. This hardening law framework is quite generic, and could readily be adapted to account for initially

sloping seabeds, or pipes on undrained clay, for example.
However, there are also limitations to be acknowledged.

1. In the numerical implementation of a force-resultant plasticity model, solutions for the loads and
displacements are sought which satisfy the yield function and the flow rule, to specified tolerances, at
the end of a pseudo time step. For the hardening law framework outlined above, the use of a discrete
data structure to record the seabed surface leads to discontinuities in the relationships between the
geometric parameters, t; and ¢9, and the plastic displacement increments. The magnitudes of these
discontinuities will depend on the value chosen for ds. If d5 is too large, then the magnitudes of the
discontinuities will be sufficiently high so as to prevent solution convergence to the specified tolerances.
Conversely, while a very small value for d5 (relative to D) would ensure convergence, it would then
be necessary to use a very high number of columns (high N), which would substantially increase the
computational cost associated with the implementation of the model.

2. The key premise underpinning the proposed hardening law is that a unique instance of the V:H yield
surface exists for a seabed characterized by a finite number of parameters, that define the seabed’s
surface geometry and its (spatially and temporally) constant strength. This assumption neglects
factors such as the influence of the variation in the spatial distribution of relative density (and, hence,

strength) arising from large-amplitude, cycle lateral displacement.
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3. A simplistic set of heuristics to predict the evolution of the seabed surface for arbitrary u, are unlikely
to be sufficiently generic to enable entirely accurate load:displacement predictions to be made. In
actuality, the mechanisms governing the evolution of the seabed are likely to be highly complex,
depending on the stress level, amongst other factors. While it was hoped that a set of heuristics could
be devised to broadly capture the key aspects of the seabed surface evolution, it is acknowledged
that, following many cycles of lateral displacement, the discrepancy between the predicted and actual
seabed surface geometries may be sufficiently large so as to give rise to substantial differences between

the predicted and actual load:displacement responses.

2.11.3 Model calibration

To a large extent, the framework of the hardening law, as outlined above, dictated the data to be
sought from the numerical and experimental work. The primary goal was to determine the instance of
the V:H yield surface for: (i) a subset of values for t1/p and t2/D (denoted herein, for brevity as, t; and ¢,
respectively) and (ii) either some prescribed material strength parameters in a numerical analysis, or some
measured strength parameters in an experimental investigation. Indeed, the calibration of the proposed
hardening law lends itself to small-strain continuum based numerical methods in which a particular
seabed surface geometry can be prescribed (by carrying out a ‘wished in place’ analysis) and spatially
homogeneous strength parameters can be assigned. This is not to say that the large-amplitude, cyclic
displacement of an on-bottom pipe on sand is a small-strain continuum mechanics problem — indeed,
it is very much a large-strain one. However, by matching the assumptions inherent to the proposed
hardening law to the assumptions underpinning the numerical analyses tasked with calibrating it, the
model’s hardening parameter look-up table can be populated in an efficient and objective manner.

For the calibration of a force-resultant model applicable to drained sand, an appropriate continuum
constitutive model for use in numerical analysis is an elastic perfectly plastic one specified by the Mohr-
Coulomb yield criterion and flow rule (for which the material parameters to be specified are the friction
angle, ¢, and the dilation angle, ¢). As discussed in §2.6, values of ¢/ and 1 should ideally be chosen
so as to satisfy Bolton’s strength-dilatancy relation (Eq. 2.6.3) for a value of ¢, in the range 30° to
37°. In Chapter 3, results generated using the highly efficient finite element limit analysis code, OxLim
— for which the assumption of associated flow (¢p = ¢') is implicit — are presented. The objective of
the OxLim analyses was to deduce the instance of the V:H yield surface for a range of values for 1,
to, @' (=) and §. Based on these results, the yield function of the proposed force-resultant model was
to be chosen, and a hardening parameter look-up table was to be populated (to enable values for the
hardening parameters of the proposed model, x f, to be obtained, via interpolation, for given values of
t1, t2, ¢’ (= 1) and 4). In Chapter 4, analyses which were carried out using the displacement FE method,

as implemented in Abaqus, are presented. The objectives of these analyses were similar to those carried
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out in OxLim, except that a non-associated flow rule was to be used (so as to give values for ¢’ and 1
which satisfy Bolton’s strength-dilatancy relation for an appropriate value of ¢.,). The Abaqus derived
data were to be used to augment the OxLim populated hardening parameter look-up table, as required,
and to formulate the flow rule of the proposed model specific to the drained sand problem.

A key objective of the experimental work (reported in Chapter 5) was to investigate whether the
instance of the V:H yield surface for measured values of t1, t2, ¢ and 1) is consistent with the data
deduced experimentally. Also, the data was to be used to select values for the entries of the elastic
stiffness matrix. Chapter 6 details the final key element of the calibration of the proposed model,
namely, the set of heuristics to relate the seabed surface geometry to the plastic displacement increments
(the last of the three steps of the proposed hardening law). Specifically, details are provided on the series
of subroutines which were written to carry out the updates to the array, S (as introduced above), for a

given increment in the plastic displacement components.

2.12 Concluding comments

In this chapter, the methods and procedures currently used by industry to carry out lateral buckling
analyses were reviewed. The inappropriateness of their reliance upon 1-DOF perfectly plastic models was
discussed, and the necessity to devise a 2-DOF model — that is, a model which predicts the loads, V and H,
from the displacements, w and u — was outlined. Force-resultant plasticity was identified as an appropriate
framework in which to devise this model since: (i) it accounts for the interdependence between the load
and displacement components in separate DOFs and (ii) it allows the load:displacement relationship
to depend on the prior history of displacement which has brought the pipe to its current position.
Existing force-resultant models applicable to on-bottom stability analyses were reviewed, and the results
of some simple example analysis cases were discussed. The limitations of these models with regard to
their use in lateral buckling analyses were outlined; specifically, the inappropriateness of hardening laws
which depend only on w, was detailed. A summary of the key findings of the research reported by the
contributors to the SAFEBUCK JIP was then provided, including discussion on both the experimental
testing programmes and the work that has been carried out to develop force-resultant models specialized
for use in lateral buckling analyses. Finally, the framework of the proposed force-resultant model, which
was devised at the outset of the research reported here, was outlined. The hardening laws are the key
novelty of the proposed model; they account for the path dependency inherent to the prediction of the
combined V:H load capacity afforded by the seabed. Further details on the scope of work which was to

be carried out to calibrate the model were also provided.
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Finite element limit analyses

3.1 Introduction

The framework of the proposed force-resultant model was outlined in §2.11. One component of the
model is the yield function, f, which defines the (V, H) load combination to induce plastic displacement.
This chapter presents the results of an extensive series of finite element limit analysis (FELA) calculations
using the program OxLim. The overarching aim of this phase of the research was to generate data to
aid the selection of a function for f, and to determine values for the hardening parameters. The chapter
commences with a definition of the boundary value problem under consideration, followed by an account
of the underlying theory and operation of OxLim. The results are then presented and discussed before
details of the regression analyses which were undertaken to determine values for the hardening parameters

are reported.

3.2 Problem definition, bound theorems and objectives

A pre-embedded, or ‘wished in place’, plane strain section of pipe was considered in the analyses
reported in this chapter (see Fig.3.1). The boundary of the soil region, ABCDEF, consisted of the
straight edges, AB, CD, DE, EF and FA in addition to the circular segment, BC, which was defined as
the portion of the soil boundary in contact with the pipe. In accordance with the hardening law of the
proposed force-resultant model, the seabed surface was idealized as two horizontal levels. The height
of the seabed surface to the right of the pipe was t; and its height to the left of the pipe was t5 (both
measured relative to the pipe invert). The boundaries DE, EF and FA were fully restrained, while the
boundaries AB and CD were treated as free surfaces — that is, boundaries along which no tractions were
permitted. The pipe was modelled as a rigid body, subjected to a per-unit-length load with vertical
component, V', and horizontal component, H. The soil bounded within ABCDEF was modelled as a
continuum obeying a constitutive model defined by a rigid, perfectly plastic Mohr-Coulomb (MC) yield

criterion and an associated flow rule (that is, a constitutive model which is neutrally stable in the sense of
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F1G. 3.1: Schematic showing the problem geometry and boundary conditions.

Drucker). As outlined by Houlsby & Puzrin [70], this choice of constitutive model is of great significance

since it leads to the following conclusions.

1. A unique yield surface exists in V:H space.

2. This yield surface is convex.

3. When a set of dwy:0u, axes are superimposed on the V:H set, the vectors of infinitesimal plastic
displacement plot normal to the yield surface (i.e. if an associated flow rule is prescribed for the
continuum constitutive relationship, an associated flow rule will also be evident in the force-resultant
constitutive relationship).

4. A combination of V and H which induces a stress field that satisfies equilibrium, the load-controlled
boundary conditions and the yield criterion will plot inside, or on, the yield surface. This is the lower
bound (LB) theorem.

5. A combination of V' and H arising from a work balance based on a kinematically admissible mechanism

will plot outside, or on, the yield surface. This is the upper bound (UB) theorem.

The objectives at the outset of this phase of the work were as follows.

e To determine bracketed estimates (i.e. both LB and UB) to a subset of the combinations of V and H
required to cause yield over a range of values for the parameters, 11, t2, ¢’ and 4.

e To select a function for f and, hence, the set of hardening parameters (the constituents of x ).

e To carry out regression analyses to determine values for the hardening parameters for each combination

of t1, ta, ¢’ and 6 (i.e. to populate the hardening parameter look-up table discussed in §2.11).

3.3 Finite element limit analysis (FELA)
As noted above, for a structure consisting entirely of a rigid, perfectly plastic material that obeys
an associated flow rule (such as the rigid pipe and idealized seabed shown in Fig.3.1), there exists a

unique load to which it must be subjected to cause collapse. This critical load is synonymously termed
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the limit, failure, yield or collapse load. Limit analysis is concerned with determining lower and upper
bound estimates to the collapse load.

To obtain a valid LB estimate to the collapse load, equilibrium and the yield criterion must be satisfied
over the entirety of the solution domain (which in the case of the problem outlined in the preceding
section, is the region enclosed by the boundary, ABCDEF, and the interface, BC). The objective of a LB
analysis is to find a stress field which maximises the applied loading without violating equilibrium or the
yield criterion — that is, to find the maximum LB collapse load solution. Clearly, if all admissible stress
fields were to be considered (i.e. those complying with equilibrium and the yield criterion), then at least
one stress field would be found for which the collapse load is the exact solution. However, in a numerical
implementation, it is not possible to consider all admissible stress fields but, rather, by introducing a
finite-dimensional basis, only a subset thereof. FELA is concerned with using finite elements to generate
this finite-dimensional subset, upon which a set of constraints are formulated to further restrict this
subset to those stress fields which comply with equilibrium and the yield criterion. Accordingly, the
search for the highest LB collapse load is then cast as a finite-dimensional constrained optimization
(maximization) problem amenable to numerical analysis.

To obtain a valid UB estimate to the collapse load, the velocity boundary conditions must be satisfied
on the solution domain boundary and an associated flow rule must be enforced throughout the entirety of
the region within this boundary.! The UB estimate to the collapse load is then obtained by formulating
a balance between the power supplied by the external loads and the internal power dissipation. The
objective of an UB analysis is to find the velocity field which minimizes the external loading — that is,
to find the minimum UB collapse load estimate. In direct analogy with the LB formulation, to cast the
UB analysis in a form amenable to numerical analysis, it is necessary to consider velocity fields defined
within a finite-dimensional basis and, then, enforce constraints to ensure compliance with the velocity
boundary conditions and an associated flow rule. As for the LB, this finite-dimensional basis is readily
introduced using finite elements.

An important concept in optimization theory is the reformulation of the objective function and
constraints of a maximization problem such that it can be recast as an equivalent minimization problem,
that is, a minimization problem which has the same solution as the original (usually termed the primal)
maximization problem. This concept is termed duality and applies equally well in reverse (i.e. for
cases in which the primal is a minimization problem). In the context of a continuous setting (prior to
the introduction of a finite-dimensional basis), since the exact limit load is unique, the dual of the UB
minimization problem must be the LB maximization problem. This well-known duality can be shown in

a more formal sense by either invoking the principle of virtual work — see, for example, Sloan [71], or from

In the context of limit analysis, it is appropriate to refer to wvelocity fields/boundary conditions, rather
than displacement fields/boundary conditions because, at the onset of collapse, the body will strain indefinitely
(providing no unloading occurs) and, hence, the displacements are indeterminate.
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a more mathematical perspective — see, for example, Ciria [72]. In a discrete context, that is, following
the introduction of a finite-dimensional basis, although the dual of the UB minimization problem might
not be identical to the LB maximization problem, they are, nevertheless, very similar to one another
(see Makrodimopoulos & Martin 73], Makrodimopoulos [74] for a full discussion on this topic). Hence,
the dual of the UB minimization problem has been termed the ‘static form’ of the UB formulation
(e.g. Makrodimopoulos & Martin [73]). Accordingly, two very similar maximization problems can be
formulated; the first to obtain a maximum LB estimate to the collapse load (by formulating the primal
optimization problem arising from the LB theorem) and the second to obtain a minimum UB estimate
to the collapse load (by formulating the dual optimization problem arising from the UB theorem). The
distinction between the two problem formulations is the interpolation space over which a solution is
sought. In any case, when devising both the LB and UB formulations, it is of paramount importance that
the interpolation space which is selected is such that the constraints imposed on discrete points within
the domain are sufficient to ensure compliance of the constraints at any point within that domain.
FELA is powerful numerical method since it allows bounds to the limit load to be computed directly,
without recourse to time-stepping along the non-linear load:displacement path, as is required in many
other commonly used numerical methods such as the conventional (incremental-iterative) FE method,
which is used and discussed in Chapter 4. Accordingly, one of the primary advantages of FELA over other
numerical methods is the efficiency with which highly accurate limit load estimates can be computed.
A further advantage is that the proximity of the bounds gives an inherent measure of the solution error
arising from the prescribed discretisation, thus enabling confidence to be placed in the validity of the

estimate.

3.4 Discussion on dilatancy

Before proceeding to a discussion on the operation of OxLim, it is important to assess the applicability
of the assumption of associated flow (¢ = ¢') in the constitutive description of sand (as implied by the use
of FELA). As discussed in §2.6, the interplay between the strength and dilatancy of sand was discussed
by Bolton [43] who proposed the following semi-empirical correlation between the operative internal angle

of friction, ¢/, and the dilation angle, 1:
¢ = ¢y +0.8¢ (2.6.3 bis.)

where ¢, is typically bounded in the range: 30° to 37° [43]. Hence, relative to Bolton’s correlation, the
assumption of associated flow over-predicts 1 for a given ¢ (at least, over the realistic range of ¢L,).

Therefore, an entirely faithful replication of the constitutive response of sand can not be obtained using
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FELA.2 Nevertheless, there are strong reasons for using limit analysis to investigate the combined (V, H)

loading of a pipe on a sand seabed.

1. Limit analysis provides bounds to the exact yield load for the case of perfect plasticity and associated
flow and, therefore, generates exact benchmarks bounds to enable the validity of solutions obtained
through other numerical methods to be assessed (e.g. the incremental-iterative FE method — as used
in Chapter 4).

2. As shown by Radenkovi¢ [75], the limit loads computed using an associated flow rule are guaranteed
to be greater than or equal to those obtained using a non-associated flow rule. Hence, the loci of yield
points obtained for the more realistic case of 1) < ¢ are known to plot inside the loci of yield points
for ¢ = ¢'. Accordingly, the yield surface deduced from regression analyses to FELA-derived data
can be viewed as an upper bound to the yield surface for the non-associated case (under the premise
that a unique yield surface exists for the non-associated case).?

3. Numerical analyses for the more realistic case of 1) < ¢ are complicated by the localization of the strain
field into narrow shear bands such that the predicted limit load is dependent on the prescribed internal
material length scale which, in a FE setting, is the element width (unless a method of regularization
is used; a topic elaborated upon in Chapter 4). For an associated case, the limit load is unique and,
therefore, numerical analyses assuming an associated flow rule generate results which show a desirable
objectivity to any length scale imposed by the numerical method.

4. While the limit loads predicted by FELA are not expected to agree with the case of a material that
exhibits non-association, the overall form of the V:H yield loci is expected to be broadly similar. For
example, it is hypothesized that, when either associated or non-associated flow rules are assumed, the
instance of the yield surface for an asymmetric seabed geometry (t; # t2) will be asymmetric about
the H axis. The verification of this hypothesis has strong implications on the choice of yield function

and, hence, has a strong bearing on the calibration of the proposed model.

Based on the above reasoning, FELA was deemed a valuable numerical tool to investigate the combined
(V, H) loading of a plane strain pipe section on sand. However, it is recognized that a force-resultant
model calibrated solely against data derived from FELA is likely to be erroneous in two respects. Firstly,
as noted above, the ‘true’ yield surface (that is, the yield surface which accounts for non-associativity of
sand — again, under the premise that a unique yield surface exists for the non-associated case) will plot
inside the one predicted by a numerical method which assumes an associated flow rule. Secondly, while

the force-resultant flow rule obtained from FELA-derived data is known to obey normality, it is likely

2The inappropriateness of assuming an associated flow rule for a frictional material can also be understood
from the perspective that the internal dissipation (plastic work) is zero (which is clearly counter-intuitive).

3Radenkovi¢ |75] derived a theorem to predict a LB to the limit load for a constitutive model defined by a
pressure dependent yield criterion, such as MC, and a plastic potential taking the same form as the yield function,
except that ¢’ is replaced by 1); see Chen [76] for a succinct description of Radenkovié’s theorem. However, as
noted by Jirasek and Bazant [77], when ¢’ significantly exceeds 1, the LB is sufficiently remote (too low) to be
practically relevant. Palmer [78] also discusses this topic.
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that a numerical method accounting for non-association in the continuum constitutive relationship will
generate data to suggest that the force-resultant model should also be defined by a non-associated flow
rule. This second point is likely to be very important for the development of a force-resultant model
which can accurately replicate load:displacement paths obtained experimentally. Hence, an investigation
into the influence of non-associativity on the components of the force-resultant model is provided in

Chapter 4.

3.5 OxLim

3.5.1 Overview

OxLim is concerned with determining LB and UB estimates to the limit load of a body of volume,
2, and boundary, S, when subjected to: (i) velocity boundary conditions, vo = [vs0 vzvo]T, on Sy, (ii)
tractions, t = [fw fZ]T, on Sy (where S;US, =S5, S; NS, =0), and (iii) body loads, b = [b, bz]T, over
Q. t and b are considered as the summation of dead and live components, with the latter scaled by the
common load multiplier, 3:

t=tp + ftL (3.5.1)
b = bp + fbr. (3.5.2)

[ is the objective function to be found in both the LB and UB optimization problems. Accordingly,
OxLim seeks the factor by which the specified live loads must be scaled to induce yield in a body
which is subjected to a set of constant dead loads. For the LB, 3 is maximized subject to the constraints
imposed by equilibrium and the yield criterion while, for the UB, 3 is minimized subject to the constraints
imposed by the velocity-controlled boundary conditions and an associated flow rule (although, OxLim
actually formulates the dual of the maximization problem for the UB; ¢f. the comments on duality
in the preceding section). Spatially constant soil self-weight was prescribed in all analyses reported in
this chapter such that by, = 0 and bp = [0+ ]T, as is consistent with the assumptions inherent to the
proposed force-resultant model (namely, that the seabed is assumed to be spatially homogeneous). The
dead and live traction components were deduced from a set of prescribed rigid body live and dead loads,
as will be discussed in §3.5.3.

Makrodimopoulos & Martin [79, 73, 80] provide a summary of the mathematical formulation of
the LB and UB optimization problems. They also discuss the important issue of spatial interpolation
(specifically, how — by the judicious choice of shape functions — a constraint formulated in terms of nodal
variables can be used to enforce a constraint at any point internal to an element). OxLim carries out
the tasks of generating the mesh (from the prescribed boundary geometry) and, then, compiling the
relevant constraint matrices for the LB and UB problems. The optimization itself is carried out using

the algorithm proposed by Andersen et al. [81], as implemented in MOSEK [82]. Following a LB and
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UB computation (which can be carried out simultaneously using a dual-core processor) OxLim evaluates

the solution error, defined as the ratio of the difference to the sum of the bounds:

error (%) = Pus = b 00 (3.5.3)

B Bus + BB

where Syp and [r,p are, respectively, the lower and upper bound estimates to the limit load multiplier,
(. If the error exceeds the specified tolerance, OxLim offers the facility to adapt the mesh and repeat
the analysis to obtain refined values for Sy and Byp in closer proximity to each other. The severity of
sub-division of each element is dictated by the magnitude of the average shear strain within each element.
This cycle is repeated until the error reduces below the prescribed tolerance, or the maximum number

of elements required to refine the solution exceeds a pre-set threshold.

3.5.2 Input file

The following data were specified in the input file which was used to instigate each OxLim analysis.

1. The (x,2) coordinates of the set of points defining the boundary of the soil perimeter. As discussed by

Makrodimopoulos & Martin [79, 73, 80], straight-edged elements are required to obtain strict LB and
UB collapse load estimates. Hence, N equally-spaced points, joined by N — 1 line segments, were
used to approximate the circular segment, BC. The remainder of the boundary geometry was defined
by the (x, z) coordinates of the points labelled A...F in Fig.3.1).

2. The connectivity of the boundary nodes. Each segment connecting a pair of boundary nodes was num-

bered and assigned a tag to identify whether it was located on a free surface (i.e. the segments
connecting nodes A to B and C to D), a restrained edge (i.e. the segments connecting nodes D to E,
E to F and F to G) or the pipe/soil interface (i.e. the segments located between B and C).

3. The angle. @. A set of local axes, (z/,2'), was introduced (for reasons which are discussed in §3.5.3),
with @ specifying the clockwise angle through which the (2/,2') set was rotated with respect to the
(z, z) set.

4. The free/restrained DOFs (in the local (2/, 2’) axis set). Three Boolean flags were used to specify the

free/ restrained DOFs: 0 and 1 respectively indicating restraint and freedom in a given DOF. For
example, [1 0 0] was used to indicate that translation along the 2’ axis was permitted but both
translation along the 2’ axis and rotation were restrained.

5. Hp, Vp and Mp. The dead loads, respectively acting in the positive 2’ direction, the positive 2’

direction, and about the out-of-plane axis, y = 4 (the significance of the dead loads is discussed in
§3.5.3).
6. Hy.Vy and M. The live load counterparts of I:ID, VD and Mp (also discussed in §3.5.3).

7. The effective unit weight of the soil, ~'.

8. The constitutive parameters. The internal friction angle, ¢', the cohesion, ¢ (which was set to zero in

all analyses), and the pipe/soil interface friction angle, .
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9. The termination criterion parameters. (i) The target % error tolerance (as given by Eq. 3.5.3) and (ii)
the maximum number of elements.

10. The parameters which specify the initial mesh. B, the target element width for the majority of the

region bounded inside ABCDEF was given, together with the (z,z) coordinates of a series of ‘focus
points’. At each focus point, a target element width — smaller than h — was prescribed. Focus points
were included to allow the initial stress and velocity fields to approximate, with greater accuracy, the

variation of stress and velocity in regions where the spatial gradients of these quantities were expected

to be high.

3.5.3 Load, velocity and mixed control

The description of the LB and UB formulations in §3.5.1 made reference to tractions prescribed
over the solution domain boundary. However, as discussed above, tractions were not specified directly
within the input file but, rather, rigid body live and dead loads (acting at a reference point at the pipe
centre) were prescribed. Accordingly, OxLim includes constraints in both the LB and UB formulations
(the ‘dualized’, or static, form of the latter) to ensure that the integrated boundary tractions along the
pipe-soil interface are in equilibrium with the loads applied to the rigid body.

Load or velocity control (or a mix of the two) can be requested in OxLim by an appropriate selection

of the Boolean flags specifying the active and restrained DOFs, as discussed in the following.

Load control

For an analysis in which arbitrary movement was permitted in all three DOFs (Boolean flags set
to [1 11]), the optimization process carried out within OxLim is readily explained with reference to
Fig.3.2a. Since the live and dead loads act in superposition (cf. Eqs3.5.1 and 3.5.2) the resultant load
can be visualized as the sum of a pair of vectors in V:H:M space, as shown in the figure (where V and
H are the load components inclined along the z’ and 2’ axes respectively). The first vector contains the
dead load components: I'p = [ Vp Hp Mp }, while the second contains the live load components
scaled by the load multiplier, 3: T'y, = (3 [ Vi, Hp M ] Both the direction and length of the first
vector is fixed while only the direction of the second vector is fixed (since its length is dependent on [,
which is the subject of the optimization process). Consequently, a (V, H, M) yield point is sought along
a direction specified by the live load components, relative to the (f/, H,M ) point specified by the dead
load components. For this reason, the assignment of the [111] Boolean flags constitutes a load-controlled
analysis.

Importantly, as shown in the figure, if the dead loads plot outside the yield surface, a series of live load
vectors which can be scaled arbitrarily (8 — oo) and not reach the yield surface will exist. Accordingly,
the LB theorem can not be satisfied for such an ill-posed problem and, for this eventuality, MOSEK

returned a flag to indicate ‘primal /dual infeasibility’.
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F1G. 3.2: Schematic showing load, mixed and velocity control in OxLim.




Chapter 3: Finite element limit analyses 7
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(a) Mixed control (restrained rotation). (b) Velocity control.

FiGc. 3.3: Mixed control (restrained rotation) and velocity control in OxLim.

Mixed control (free translation, restrained rotation)

For an analysis in which rotation was restrained (Boolean flags set to [110]), the optimization process
carried out within OxLim is readily explained with reference to Fig.3.2b. For this case, no constraint
is imposed on the resultant moment. The implication of this, in terms of the geometric interpretation
outlined above, is that the direction of the live load vector, I'*, is now not defined uniquely but, rather,
is confined to a plane in V:H:M space, as shown in the figure. From the LB maximization problem, it is
apparent that the exact solution corresponds to the vector with the largest resultant of V and H (largest
B) yet still confined to this plane and bounded within, or located on, the yield surface. As indicated
on the figure, the head of the vector which fulfils this specification is located on a point on the yield
surface with normal directed perpendicular to the M axis. Since the use of an associated flow rule in a
continuum context is known to generate data which satisfies an associated flow rule in a force-resultant
context (¢f. point 3 on page 69), it follows that the removal of the moment constraint equations has
the desired effect of restraining against rotation. The comments on the importance of the specification
of a set of dead loads which plot inside the yield surface, given for the load control case above, are of
equal significance to this mixed control case. In the following discussion on the automation of the OxLim
analyses, it is convenient to introduce 6, the angle between the vector, I'*, and the V axis. Fig.3.3a is

a schematic showing the operation of mixed control in V:H plane for § = 0°, 90°, 180° and 270°.

Velocity control

For an analysis in which both rotation and translation along the 2’ axis are restrained (Boolean flags
set to [100]), the optimization process carried out within OxLim is explained with reference to Fig. 3.2c.
For this case, no constraint is placed on the 2’ component of the resultant load and, likewise, no constraint
is also placed on the resultant moment. This means that the second vector is now unrestrained and the
optimization process carried out in OxLim seeks the point on the yield surface with the largest value of

V' (the largest possible (), as indicated on the figure. The normal direction to the yield surface at this

point has no component parallel to the H or M axes. Therefore, the removal of the constraints on the
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F1G. 3.4: Output from a typical OxLim analysis, showing the use of mesh adaptivity to obtain refined estimates
to the LB and UB collapse loads. Case shown is for t; = t5 = 0.4, ¢’ = § = 30° with loading applied
under mixed control (restrained rotation).

moments and resultant load in the 2’ direction has the desired effect of restraining against both rotation
and velocity in the 2’ direction.

The significance of the rotated coordinate frame now becomes clear: the angle, &, dictates the
direction in which the pipe is permitted to translate. Since rigid plasticity is assumed in FELA, & can be
readily related to «, the angle at which a flow vector is inclined to the H axis in V:H space, according
to: @ = a — 90°. Under velocity control, the choice of I'p is irrelevant since the space of admissible
loads is not subject to any constraints emanating from the selection of the dead loads. Accordingly, all
velocity-controlled analyses were carried out with dead loads taken as zero. Furthermore, only the value
for V7, is of significance for this type of analysis and by taking this value as unity, 3 is the magnitude
of the resultant load required to bring about yield. Fig.3.3b is a schematic to show the operation of

velocity control for @ = —90°, 0°, 90° and 180°.

3.5.4 OxLim output
Fig.3.4 shows the output from a typical OxLim analysis. The mesh for the first iteration was

generated by taking h as 1.5D and using two focus points (positioned at the intersections between the
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test | & L | 9) o) ] 00)
T |04 04 30 30 | 90
2 (04 04] 30 0 | 90
3 (02 02] 30 0 | 90
4 102 00| 30 30 | 45

TABLE 3.1: Parameter values for the analyses carried out to assess the influence of [ on the limit load.

pipe/soil interface and the seabed surface). Fig.3.4a shows the increase in the LB estimate to V and
the decrease in the UB estimate to V' with element number. Fig.3.4b shows the reduction in the error
(as given by Eq.3.5.3). Four iterations were required to allow the error to reduce below the specified
threshold of 2%. Figs 3.4c-3.4f are the meshes for each of the four iterations (indeed, by the fourth
iteration, the mesh is sufficiently fine that the failure mechanism is beginning to become visible).

Following the completion of an OxLim analysis, a summary (.out) file containing data and diagnostic
details for the analysis was returned. For each iteration in an analysis, this file listed: (i) the number of
elements in the mesh, (ii) Syp and G, (iii) the solution error (as given by Eq.3.5.3), and (iv) flags to
indicate the feasibility or otherwise of each LB and UB optimization problem. An infeasible problem was
indicative of an error in the problem definition (for example, a load-controlled analysis with prescribed
dead loads which plot outside the yield surface). For the analyses used to generate the data presented
in this chapter, checks were carried out to ensure all the optimization problems submitted to MOSEK,
via OxLim, were feasible.

To enable post-processing of the stress and velocity fields, a pair of files were returned from the final
iteration of the LB analysis. The first (.Ib.post.msh) contained the (z, z) coordinates of the nodes while
the second (.Ib.post.res) contained: (i) a list of the nodal stress components, 0, 0., and o, (ii) the
nodal utilization (defined and discussed subsequently), and (iii) the nodal velocity components, v, and
v, (as inferred from the dual to the LB maximization problem). For the UB analysis, an equivalent pair
of files were returned, .ub.post.msh and .ub.post.res, with the velocity components deduced from the
primal of the UB problem and the stress components deduced from its dual.

Two further files (.Ib.rbr and ub.rbr) returned the rigid body reaction loads for the LB and UB
analyses, respectively. The total rigid body loads, in the (z, z) frame, were calculated straightforwardly

from H and V according to:
V = Hsina+ Vcosa (3.5.4)
H = Hcosa— Vsina. (3.5.5)

Equivalently, the rigid body velocities were calculated and returned in the files, .Ib.rbv and ub.rbv, for

the LB and UB analyses respectively.



Chapter 3: Finite element limit analyses 80

1.1
1.08 + R
1.06 R
1.04 + i :
test
S 1021 X * o ° test )
g X X + es
0 1 M@F o o ¥ o o o o o i
= AT PR X X test 3
= 098¢ ¢ s ]
X o test 4
0.96 - o |
0.94 - |
0.92 - |
09 | | | | | ° | |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
l,/D

Fic. 3.5: 8/8,,..u against [, for the four cases listed in Table 3.1.

3.6 Results

3.6.1 Selection of [,

It was important to ensure that the pipe/soil interface was divided into a sufficiently high number of
line segments such that the yield loads computed by OxLim were in close agreement with those which
would have been obtained if an actual circular segment had been used. To aid the selection of 5, a set
of OxLim analyses were carried using the values for ¢/, §, £; and s listed in Table 3.1. These analyses
were carried out under mixed control (restrained rotation, see Fig.3.3a, using the values for § given in
the table). The objective of this set of analyses was to determine the critical value of I; below which
consistent predictions of the yield load were obtained. The smallest s considered in these trial tests
was 0.002D and the load multiplier obtained for this case, denoted here as Bgnqu, was assumed to be
sufficiently accurate so as to represent the actual case of a circular segment. The influence of increasing
ls is shown in Fig. 3.5 as a plot of the load multiplier, 5, normalized by Bsmnai, against ls. This plot shows
that consistent yield load predictions were obtained providing I < 0.02D. To err on the side of caution,

ls < 0.01D was used in all of the OxLim analyses discussed subsequently.

3.6.2 Introductory analyses

Overview

For a flat footing, subjected to a vertical load and resting on sand (the constitutive response of
which is defined by the perfectly plastic, MC yield criterion and associated flow rule), the relationship
between V and ¢’ is highly non-linear (see, for example, Martin [83]). To capture this non-linearity via a
parametric study, it is desirable to sample ¢’ more heavily at higher values than lower ones. Concerning
the influence of ¢ on the limit load, Martin [83] showed that, over 1/3 < § < 1, the limit load is bounded
within 75% of its fully rough (¢’ = ¢§) value, thus suggesting the need for non-uniform sampling of § as
well. Tt was anticipated that similar behaviour would be identified in this investigation and, therefore,

an introductory set of analyses was carried out to test this hypothesis. This detailed assessment of a



Chapter 3: Finite element limit analyses 81

case | t; | to ¢ (°) 5 (°) a (°)
(i) [ 04]04|14<¢ <4510, ¢/, ¢/2,20'/3, ¢ | 90
(i) | 0.4 0.0|14<¢' <450,/ 02, 20'f3, ¢/ | 0

TABLE 3.2: Parameter values for preliminary OxLim analyses.

sample set of analyses is also valuable from the viewpoint of providing the opportunity to discuss the
failure mechanisms accompanying yield. Table 3.2 lists the values of 1, t2, ¢’ and ¢ for the two sample
cases discussed in the following. All analyses reported in this section were carried out with a target error

tolerance of 2% and a maximum of 40,000 elements.

Presentation of the failure mechanisms

Two types of plot are used subsequently to provide insight into the failure mechanisms. The first is
a plot of the 0.99 contour of utilisation, U. Utilisation is defined as the ratio of the actual radius of the
Mohr’s circle of stress at a given (x,z) point to its maximum allowable value at the same mean stress
(such that the Mohr’s circle touches the MC yield envelope). For the case of no cohesion (¢/ =0), U is

given as:

_ \/ng + (002 — om)?
U= o sin () (3.6.1)

where 0y, = 1/2 (04, + 0-) is the mean in-plane stress. A plot of the spatial distribution of utilisation
allows regions undergoing yield to be distinguished from those regions that are either stationary or
undergoing rigid body movement. In the following plots, the U = 0.99 contour is taken to enclose the
yielded zones (rather than U = 1) since it was found that the resultant yield load could be obtained to
within the specified error tolerance without the stress fields from the LB or UB being exact (and, hence,
giving U of exactly 1). The region enclosed by the U = 0.99 contour on the plots in Figs 3.7 and 3.9 is
that shaded grey.

The second plot shows the field of velocity vectors, as extracted from the UB analysis. In the interests
of clarity, rather than plotting velocity vectors for every node, a representative sample across the spatial
domain was taken. Also, for clarity, due to the velocity singularity at the interface between the pipe and

the seabed free surface, the maximum vector length was limited to 0.25D.

Case (i): Results

The seabed surface geometry for this case is representative of vertical penetration during pipe-lay. A
series of velocity-controlled (o = 90°, Boolean flags set to [100]) OxLim simulations were carried out to
determine the resultant dimensionless yield load, V, for 1° increments of ¢’ over the range 14° < ¢’ < 45°
and 0 = 0, ¢'/3, ¢'/2, 2¢'/3 and ¢'. Fig.3.6a is a plot of the results and shows the expected highly non-
linear increase of V with ¢’ and also that V increases with §. To gain greater insight into the influence
of 6 on V, the data shown in Fig.3.6a are re-plotted in Fig.3.6b with the ordinate normalized by the

dimensionless resultant load for the fully rough (6 = ¢') case, Vrousn/y'D2. This plot shows that for
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14° < ¢ < 45°, V > 0.69V,gugpn for all § > ¢'/2. The insensitivity of V to § > ¢'/2 is evident from
the viewpoint of carrying out a parametric study since it implies that only a small number of samples
of § within this range are required. Furthermore, Potyondy [84] carried out an exhaustive series of
physical tests (using shear box apparatus) to determine the interface friction angle for various material
and soil interfaces (including steel, concrete and both sands and clays). His investigation concluded that
d is bounded between 0.543¢" (for a smooth steel /sand interface) and 0.99¢’ (for a rough concrete/sand
interface). Consequently, 6/¢' > 0.5 — the range over which §/¢’ exerts a weak influence on V - is the
range of practical interest whereas, 9/¢’ < 0.5 — the range over which /¢’ exerts a greater influence on
V (eg. V= 0.245V, gugn for ¢/ = 45° and § = 0°) — is of less practical relevance. Fig.3.6¢ is a plot of
the error (as defined by Eq.3.5.3) for all tests. This plot shows that bounds within the target tolerance
of 2% were attained for all analyses carried out for ¢’ and § pairings with: ¢ = § > 42° and ¢ = 45°,
d = 2/3¢/. However, even the worst bracketing achieved with the 40,000 element limit was just 3.45%

(for ¢/ = § = 45°), which is very acceptable and does not mask the trends in the data stated above.

Case (1): Failure mechanisms

The failure mechanisms for this case are shown in Fig.3.7. From these figures, the following obser-

vations are discernible.

e For the fully rough case (6 = ¢’), the utilisation plots show that there is a region of soil in contact
with the underside of the pipe which is not at yield (labeled as the ’false head* in Figs 3.7a and 3.7¢).
In contrast, yield occurs over the entirety of the pipe/soil interface for the smooth case (6 = 0). The
presence of this false head is widely recognized in the analysis of flat footings (e.g. Martin [83]) and
occurs because the shear stress at the centre-point of the interface must be zero (due to symmetry)
and, hence, yield at this point is impossible unless § = 0 (in which case the MC yield surface, for
=0, collapses to a straight line indicating that yield can occur in this degenerate case under zero
shear stress). The false head can be thought of as rigid body fixed to the pipe and, hence, it serves to
induce a deep Prandtl-like failure mechanism. The absence of a false-head for the smooth cases results
in a smaller mass of soil participating in a Hill-type failure mechanism. The cumulative effect of the
increase in the size of the failure zone with 4 is the increase of V with 6, as shown in Fig. 3.6a.*

e A comparison between Figs 3.7a and 3.7c and, likewise, Figs 3.7b and 3.7d shows that reducing ¢’
serves to reduce the size of the failure zone. This trend is due to the implicit assumption within FELA
of associated flow (¢ = ¢'); the higher v, the more dilation occurs and, hence, the more soil which
participates in failure mechanism. In part, this is the reason for the increase of V' with ¢ (although,

by definition, increasing ¢’ means that higher shear stresses are required to induce failure for the same

*In each of the utilisation plots in Figs 3.7a-3.7d, U is less than 0.99 along the free surface (particularly so for
the smooth cases). This is attributed to a numerical artifact stemming from the numerator and the denominator
of Eq.3.6.1 both approaching zero. In actuality, the yielded zone is expected to transition to the free surface, as
confirmed by the exact solutions derived from the method of characteristics (¢f. Martin [83]).
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Fic. 3.7: Failure mechanisms for ¢| = 5 = 0.4.

applied normal stress and, hence, this will also have a substantial bearing on the relationship between

V and ¢).

Case (ii): Results

The geometry of this case is representative of a pipe undergoing lateral displacement (particularly
on engaging a berm deposited from a prior lateral displacement excursion). Velocity-controlled OxLim
simulations were carried out to determine the values of V' and H to cause purely horizontal movement
(a = 0°, Boolean flags set to [1 00]). As for case (i), OxLim simulations were carried out for 1°
increments of ¢ in the range 14° < ¢/ < 45° and 6 = 0, ¢'/3, ¢'/2, 2¢'/3 and ¢’. For this case, rather
than considering the vertical and horizontal load components separately, it is more convenient to assess
the influence exerted by the constitutive parameters on the resultant load (which — since the analysis is
velocity-controlled — is of magnitude, ). Fig. 3.8a shows a highly non-linear variation of |/y'D2| with ¢/,

echoing the findings of case (i). Furthermore, Fig. 3.8b shows that ¢ exerts an even weaker influence on
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Fic. 3.8: Influence of ¢’ and § on 3 and the solution error for #; = 0.4, t5 = 0.

the limit load, since all values of |8/y'D2?| for § = ¢'/2 are within 80% of their fully rough values for the
same ¢'. Fig. 3.8c shows that bounds within the target tolerance of 2% were obtained for all analyses for

¢’ < 40°, and even the worst bracketing with the 40,000 element limit was just 3.15% (for ¢’ = § = 44°).

Case (ii): Failure mechanisms

Turning to the failure mechanisms in Fig. 3.9, the following observations are worthy of comment.
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t to ¢’ [¥] (both °)

0.1 0.0, 0.1 30 [10, 20[; 30 [15, 30[; 35 [17.5, 35]; 40 [20, 40]
0.2 0.0, 0.1, 0.2 20 [10, 20]; 30 [15, 30]; 35 [17.5, 35]; 40 [20, 40]
0.4 0.0, 0.1, 0.2, 0.4 20 [10, 20]; 30 [15, 30]; 35 [17.5, 35]; 40 [20, 40]
0.6 | 0.0,0.1,02 04,06 | 2010, 20]; 30 [15, 30]; 35 [17.5, 35]; 40 [20, 40|
0.8 | 0.0,0.1,0.2, 0.4, 0.6, 0.8 | 20 [10, 20]; 30 [15, 30]; 35 [17.5, 35]; 40 [20, 40]

TABLE 3.3: Values for ¢, t2, ¢’ and ¢ used in in the batch set of OxLim analyses.

e Asin case (i), false heads are evident in the rough analyses and are absent in the smooth analyses.
The utilization plots show that the presence of the false head increases the extent of the failure zone
and this is likely to be the cause of the increase of |8/5/D?| with §. However, the relative difference in
size of the failure zones for the rough and smooth analyses is smaller than was evident from case (i).
This tallies with the above comments on the weaker influence of § for this case, relative to the first.

e For all four combinations of ¢’ and ¢, the utilization plots suggest that the failure zone can be classified
into two regions: the first is confined to the right of the pipe centre while the second is located
predominantly beneath the pipe. The velocity vector plots show that the soil in the first zone is lifted
to the free surface to the right of the pipe centre whereas the soil in the second zone is lifted leftward
from beneath the pipe. For the rough cases, the two zones are divided by the false head, while for
the smooth cases, they meet on the pipe/soil interface. The extent of the first zone exceeds that of
the second, although their size is more comparable for ¢/ = 30° than ¢’ = 20°. Reducing ¢’ is seen to
reduce the size of the first zone, however, it is noteworthy that the size of second zone remains largely
unchanged.

e In the proposed force-resultant constitutive model (as outlined in §2.11), it is assumed that the current
instance of the V:H yield surface can be correlated to the strength parameters, ¢/, § and ¢ and the
geometric parameters, t; and f5. The fact that the size of the failure zone to the right of the pipe
centre increases with ¢ implies that the lateral distance used for the averages to compute ¢ and ¢,
should also increase with ¢’ (however, for pragmatic reasons, constant lateral averaging distances are

actually used in the implementation of the model, as will be discussed in Chapter 6).

3.6.3 Geometric and constitutive parameter selection

Values for the combinations of 1 and t5 used in the batch set of OxLim analyses are listed in Table
3.3. This choice of values for ¢; and ¢y stemmed from the necessity to generate data to determine the
(V, H) yield surface during both pipe-lay (penetration) and large-amplitude, lateral movement (and the
transition between the two). For an analysis with £5 = 0, the absence of surcharge behind the pipe was
expected to cause yield to occur under substantially lower combinations of V' and H than when some
small surcharge (t2 > 0) was included. Accordingly, t2 = 0.1 was considered for all ¢; in order to smooth
the sharp transition that was envisaged to be evident in the relationships between ¢, and the hardening

parameters for low £s.
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e

false head

(a) ¢ =30°, 6 =230% U = 0.99 contour (left) and velocity vectors (right).

(b) ¢’ =30° 6 =0° U = 0.99 contour (left) and velocity vectors (right).

o

false head

(c) ¢ =20°, 6 =20° U = 0.99 contour (left) and velocity vectors (right).

B

(d) ¢ =0°,0=0° U =0.99 contour (left) and velocity vectors (right).
Fic. 3.9: Failure mechanisms for ¢| = 5 = 0.4.
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(b) Sample case (ii).
F1G. 3.10: Comparison between the proposed scheme for sampling the constitutive parameters and the data
obtained from OxLim.

The discussion in the preceding section concluded that ¢’ exerts a significantly greater influence on
the bearing capacity than § and also that there is a need to sample ¢’ more heavily at higher values than
lower ones. Consequently, for each pairing of #; and #3, bounds to the loci of (V, H) yield points were
determined for ¢/ = 20°, 30°, 35° and 40°, while just two roughness parameters were considered: § = ¢’
and 6 = ¢'/2 (the extremities of the practically significant range reported by Potyondy [84]). Fig.3.10a is
a plot of the comparison between this proposed sampling scheme (assuming linear interpolation between
the sampled values of ¢') and the yield points obtained from the 1° increments in ¢’ analysed for case (i)
of §3.6.2. Likewise, Fig.3.10a is an analogous plot for case (ii) of §3.6.2. Both of these figures identify
that the largest discrepancy between this interpolation scheme and the data occurs for ¢ values between
35° and 40°. While it would have been desirable to sample over a smaller interval of both ¢’ (and indeed
0), since 50 limit analysis computations were undertaken to map each yield surface, an increase in the
resolution of the sampling of the constitutive parameters would increase the also overall computation
time. Also, the error incurred from this sampling procedure was anticipated to be insignificant relative

to that incurred by the inclusion of non-association, as detailed in Chapter 4.

3.6.4 Automated submission of OxLim analyses
A procedure was sought to automate the submission of the OxLim analyses so as to obtain sets of

yield points that were reasonably evenly distributed in V:H load space. This was necessary to ensure
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FiG. 3.11: Intermediary stages of the automated procedure used to determine the locus of (V, H) yield points
fort; = 0.1, £, = 0, ¢’ = 20° and 6 = 10°.

that the analytical function fitted through the yield points was not overly weighted towards a collection
of closely-spaced data points (and, consequently, provided a poor fit to the remaining, sparse collection
of data-points located elsewhere in the V:H plane). To achieve this objective, a MATLAB [85] script
was tasked with: (i) scheduling the OxLim analyses (specifically, selecting the value for @ in a velocity-
controlled analysis and § in a mixed-controlled (free translation, restrained rotation analysis), (ii) writing
the appropriate series of OxLim input files, and (iii) calling the OxLim executable. The key steps of this

MATLAB script are explained in the following, with reference to Fig.3.11.

1. First, a series of velocity-controlled analyses were carried out with & values taken as 11.25° (k — 1)
where, for the general case of an asymmetric seabed (i.e. t; # t2), k = 1,2,3...16 and, otherwise, for
a symmetric seabed (i.e. £} = t3), k= 1,2,3...8 . The script then produced a plot (in V : H space)
of the mean of the LB and UB yield load estimates for each of these analyses. The circular markers
on the plot in Fig.3.11a show these results for t; = 0.1, 5 = 0.0, ¢’ = 20° and § = 10°.

2. From the plot of the velocity controlled analyses, an arbitrary point located inside the locus of 16
yield points was selected manually. For the case shown in the figure, the chosen point is shown by

the solid, square marker. This was taken as the dead load point for the subsequent mixed-controlled
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analyses such that feasible optimization problems could then be submitted to MOSEK for any @ (cf.
the discussion in §3.5.3).

3. Next, the two neighbouring yield points separated by the largest distance, in V:H space, were selected.
For the example case shown in Fig.3.11b, these points are labelled A and B.

4. A mixed-controlled analysis was then carried out. @ was chosen as the angle between the V axis
and the vector which has its tail located at the dead load point and bisects the line, AB. For the
example case, the (V, H ) yield point obtained from this mixed-controlled analysis is shown by the

solid, diamond marker labelled 1.

The procedures given in steps 3 and 4 were then repeated. Fig.3.11c shows that, after finding yield
point 1, the largest distance between two neighbouring yield points was that between points C and D.
Hence, the next mixed-controlled analysis found the yield point labelled 2. Following this, yield point
3 was found between points E and F (see Fig.3.11d), and then the yield point 4 was found between
points B and 1 (see Fig.3.11e). Fig.3.11f shows the final locus of yield points after 34 mixed-controlled
analyses had been carried out (thus giving a total of 50 yield points). This procedure was used for all the
combinations of £y, 2, ¢’ and § listed in Table 3.3 (although, for £; = f5, the range of § was restricted to

0-180°, and only 17 mixed-controlled analyses were carried out).

3.6.5 V:H yield loci

In this section, the results of the analyses which were undertaken to determine the loci of (V, H )
yield points for each combination of 1, t3, ¢ and ¢ listed in Table 3.3 are presented and discussed.
These analyses were carried out with an error tolerance (as defined by Eq. 3.5.3) of 5% and a maximum
of 40,000 elements. This error tolerance was deemed appropriate since: (i) the gain in accuracy of a few
further percentage points represented a significant proportion of the overall run-time, and (ii) the error
incurred by fitting the yield curve through the yield points was anticipated to be greater than the error
stemming from the data generation itself.

Fig.3.12a is a plot of the locus of yield points, as calculated from the mean of the LB and UB results,
in V:H space, for t; = t3 = 0.4 and ¢/ = § = 30° (the parameter set considered in case (i) of §3.6.2).
Evidently, an even distribution of yield points was successfully obtained using the strategy detailed in
§3.6.4. The locus defined by the yield points has a maximum V of 11.01 (which occurs at H = 0) and a
maximum H of 1.56 (such that the yield surface’s extent along the V axis is 7.06 times its extent along
the H axis). It is noteworthy that the shape of the locus of yield points tends to suggest that the yield
surface has two apexes (the first at the peak vertical load, and the second at the origin).

Eight flow vectors (labelled with their respective a values) are also included on the plot in Fig. 3.12a.
It is apparent that those flow vectors which are not located at either apex plot normal to the yield

surface and that the v = 0° flow vector (which, by definition, plots on the parallel point) is located
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(a) Locus of yield points in V : H space, and flow vectors
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Fic. 3.12: Results for ¢/ = § = 30°, #; =t = 0.4.
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at the maximum H value (1.56). These observations are consistent with the properties of yield surface
convexity and normality, as discussed in Section 3.2. It is also significant that the flow vectors for
a = 45°,67.5° and 90° plot on the same yield point (at the apex with (V, Ef) = (11.01,0)). Accordingly,
this data suggests that the direction of plastic displacement is not defined uniquely under purely vertical
loading. Although this finding might appear counter-intuitive, it is entirely justifiable from a theoretical
standpoint since the assignment of perfect plasticity and an associated flow rule only ensures uniqueness
of the stress field. The strain rate field, on the other hand, is not necessarily unique (and, hence, neither
is the velocity field nor the flow vector orientation). The lack of a unique flow vector orientation at the
peak vertical load also adds credence to the notion that the yield surface admits an apex (since at an
apex, there is no unique normal). It is noteworthy that similar behaviour was encapsulated by Zhang
et al.’s model [38], as discussed in §2.7.2.

While the very purpose of a force-resultant constitutive model is to compact the underlying physics
governing yield into a simple and compact mathematical framework, it is nevertheless valuable to explore
the connection between the distribution of yield points in the V:H plane and the corresponding failure
mechanisms. Figs 3.12b-3.12i show the velocity vector fields of each analysis for which a flow vector is
included on the plot in Fig.3.12a. These failure mechanisms can be classified into two categories: the
first consisting of those failure mechanisms which require the soil’s yield strength to be mobilized on
both sides of the pipe, and the second consisting of those failure mechanisms which require the soil’s
yield strength to be mobilized on just one side of the pipe (the side into which the pipe is displacing).
Figs 3.12b-3.12d show that the velocity vector fields for a = 90°, 67.5° and 45° are two-sided, while Figs
3.12e-3.12h show that the velocity vector fields for a = 12.6°, 0°, 337.5°(—22.5°) and 315°(—45°) are
single-sided. It appears that the transition of the (V, H ) yield point from the apex to the smooth portion
of the yield surface corresponds to the transition from a two-sided to single-sided failure mechanism. The
identification of a single-sided failure mechanism suggests that, over some values for «, the (V, H ) load
capacity is likely to be independent of ¢5. Some consequences of this finding with regard to the formulation
of the force-resultant model are explored in §3.7.2.

Concerning the two-sided mechanisms, for o = 90°, the velocity vector field is, unsurprisingly, sym-
metric about the vertical plane passing through the pipe centre (indeed, this was the case discussed in
case (i) of §3.6.2). For a = 67.5° and v = 45°, an asymmetric distribution of velocity vectors is evident,
with the extent of the failure zone to the right of the pipe centre greater than its extent to the left of the
pipe centre. However, it is noteworthy that, for all three two-sided mechanisms, the extent of the failure
zone to the right of the pipe centre is approximately the same. For the single-sided failure mechanisms,
the extent of the wedge of soil which must be mobilized to cause failure for v = 0° is less than that for
«a = 12.6°. The introduction of uplift, unsurprisingly, brings about a further reduction in the size of the

failure zone. Accordingly, it would appear that reducing the yield value for V reduces the extent of the
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(a) Locus of yield points in V : H space, and flow vectors
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wedge which must be lifted ahead of the pipe. This finding is consistent with the notion that the lower
the vertical load subjected to the pipe (i.e. lower V), the greater the tendency for the pipe to ride up
over a berm (i.e. the higher a) and record a lower horizontal resistance (i.e. lower H).

Figs 3.13a is the analogous plot to Fig.3.12a for the parameter set, t; = 0.4, to = 0, ¢’ = 6 = 30°.
As expected, the surface passing through the yield points in Fig.3.13 is asymmetric about the V axis.
Also, the maximum V is just 2.61, compared to 11.01 for the symmetric case, t; = ty = 0.4 (for the
same values for ¢/ and §). This suggests that as the pipe undergoes lateral displacement, the size of the
yield surface reduces substantially and its asymmetry about the V axis increases. A pair of apexes also
appears to be evident in the yield surface: the first at the maximum vertical load, (V, I:I) = (2.61,1.14),
and the second at the origin. As for the t; = {5 = 0.4 case, a multitude of flow vectors are evident at the
maximum vertical load.

The failure mechanisms of each analysis for which a flow vector is included on the plot in Fig.3.13a
are shown in Figs 3.12b-3.12i. For purely horizontal plastic displacement (o = 0°), the failure mechanism
is two-sided, although the extent of the wedge to the right of the pipe centre is significantly larger than
that to its left. Indeed, this was the case considered in case (ii) of §3.6.2 and the plot of the U = 0.99
contour in Fig.3.9a shows clearly the extent of the failure zone behind the pipe. Interestingly, the
a = 0° flow vector is not located on the apex of the yield surface, although it is within its immediate
vicinity. For a = 45°, a = 90° and a = 135°, the failure mechanisms are almost identical and consist
of substantial yielded zones on either side of the pipe. For o = 297.5°(—62.5°), o = 315°(—45°) and
a = 337.5°(—22.5°), the failure mechanisms are single-sided (confined to the right of the pipe centre)
and, as for the t; = t5 = 0.4 case, the extent of the failure mechanism decreases as o decreases. For
a = 157.5°, failure occurs by mobilizing the soil’s yield strength only beneath/behind the pipe i.e. the
soil ahead of the pipe is not at yield. The yield point for the o = 157.5° flow vector plots on the smooth
portion of the yield surface and, hence, it is likely that the emergence of a single-sided failure mechanism,
confined to the zone behind the pipe, accompanies yield for load points which plot on this portion of the
yield surface.

Since this seabed surface geometry is representative of that which the pipe might experience while
undergoing lateral buckling/bending, it is important to comment on the redistribution of soil, as implied
by the field of velocity vector fields, for various « values. Although it is convenient to assume that all of the
soil through which the pipe ploughs during lateral displacement accumulates ahead of the pipe, this data
tends to suggest that the inclusion of a component of vertical plastic displacement (0° < o < 90°) during
lateral displacement brings about some redistribution of soil behind the pipe. Given the importance
of predicting and storing the evolution of the seabed surface, as outlined in Chapter 2, this finding
is significant. With regard to the formulation of the force-resultant constitutive model, this test data

suggests that a heuristic is required to relate a to the proportion of the soil which is redistributed ahead
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F1G. 3.14: Loci of yield points in V:H space for ¢/ = 20°, £; = 0.8.
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of, and behind, the pipe. Further treatment on this aspect of the proposed force-resultant model is
provided in Chapter 6.

Fig.3.14 contains six plots which show the influence of varying fs, while maintaining a constant
t1 = 0.8, on the distribution of yield points in the V:H plane. The data included in this figure is taken
from analyses in which the soil was prescribed a friction angle of 20° (the lowest value considered for the
batch set of analyses), for both fully rough (6 = ¢') and semi-rough (6 = ¢'/2) interfaces. The plots in this
figure indicate that over the transition from a symmetric (t; = to = 0.8) to fully asymmetric (f; = 0.8,
t = 0) seabed, the locus of yield points contracts and becomes confined to the positive V', positive H
quadrant of the V : H plane. Importantly, this implies that a mix of kinematic and isotropic hardening
accompanies lateral displacement. Fig.3.15 is a plot of the data included on the six plots in Fig.3.14
on a common set of axes. This figure reveals that a portion of the yield points, for each t5 value, plot
along a common curve. This finding adds further weight to the observation that a common, single-sided
mechanism (which is therefore independent of f5) controls failure for a subset of plastic displacement
directions (i.e. a values).

Figs 3.16 and 3.17 are the respective counterparts of Figs 3.14 and 3.15 for ¢’ = 40° — again, for both
fully rough (§ = ¢') and semi-rough (6 = ¢'/2) interfaces. As expected, a comparison between the scale
of the plots in Fig.3.14 with their counterparts in Fig.3.16 suggests that the yield surface for ¢/ = 40°
is significantly larger than for ¢/ = 20°. Perhaps a less obvious observation is that the ratio of the peak
vertical load to the peak horizontal load for t; = t5 is higher for ¢/ = 40° than ¢’ = 20°, i.e. the ratio of
the extent of the yield surface along the V axis to its maximum extent parallel to the H axis increases
with ¢’. A close examination of the plot in Fig.3.15 also reveals that the yields points, for various t,
do not quite plot on a common curve, as was the case for ¢’ = 20°; this is particularly discernible for
ts = 0. This trend implies that, as ¢’ increases, the influence of the extent of the wedge behind the pipe
becomes more critical; the implications of this finding on the calibration of the force-resultant model are

discussed further in §3.7.2.

3.7 Analysis of results

3.7.1 Yield function, f, and hardening parameters, Xy

A suitable yield function is one with a zero contour (the yield surface) which fits the loci of yield
points obtained for each combination of 1, 3, ¢’ and § by an appropriate selection of values for the
hardening parameters. In the preceding section, it was noted that the distribution of yield points in the
V:H plane suggests that the choice of the yield function should be such that the yield surface includes
(or provides a continuous approximation to) a pair of apexes: the first located at the origin and the

second located close to the maximum sustainable vertical load. Accordingly, the yield loci can be well
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F1G. 3.18: Schematic showing the proposed yield function.

fitted by a function of the form:

f=max(f1, f2) (3.7.1)

where:
o= _% (1 - %) + Hﬂl (3.7.2)
£ o= _% <1 - %) - H£2 (3.7.3)

such that Vi, Hy, V5 and Hy are hardening parameters (the constituents of x ¢ for the proposed model).
As shown schematically in Fig.3.18, f; = 0 and fo = 0 are parabolas; f; = 0 has V intercepts of 0 and V7,
and attains an extreme H of H; while fs = 0 has V intercepts of 0 and V5, and attains an extreme H of
H,. Positive values of Hy and Hy were chosen to give f; = 0 as a concave downward curve in V:H space
(with V, as usual, the abscissa) and fo = 0 as a concave upward curve in the same space. The elastic
region (f < 0) is enclosed within the two curves and at their intersection (f; = fo = 0), the composite
yield surface has two apexes. For a symmetric seabed (t; = t3), the yield surface is also symmetric about
the V axis, such that V; = V5 is the maximum V to which the pipe can be subjected for its current
penetration (and, hence, for this symmetric case, V3 = V5 has the same physical interpretation as the
parameter, Vg, used in the models applicable to offshore foundations and on-bottom pipeline stability,
as discussed in §2.7.2). For an asymmetric seabed and, hence, an asymmetric yield surface, Vi and V5

cease to have such straightforward physical interpretations. Accordingly, it is convenient to introduce V.
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F1G. 3.19: Parabolic yield surface curve fits to the mean of the OxLim bounds.

and H,. which, as labelled on the plots in Fig.3.18b, are the (V, H) coordinates of the apex formed by
the intersection between the two curves which is not at the origin. V. and H, are given in terms of V7,

Hq, V5 and Hy as follows:
 H WV + H VPV,

V. 3.7.4
H\Vy 4+ Hy VP (38.74)

4H, Ve Ve
H, = 1--2). 3.7.5
(-3 (3.7.5)

Since the yield surface passes though the origin, s = \/m is the length (in V:H space) between
the two apexes and, hence, provides a convenient scalar indication of the size of the yield surface.
Also, an indication of the asymmetry of the yield surface about the H axis can be obtained from 6, =
arctan (He/v.), the angle at which the line passing through the two apexes is inclined to the V axis.
Values for V4, Hy, Vo and Hy (the respective dimensionless values for V4, Hy, Vo and Hy ) were
obtained for each t1, t2, ¢’ and § by a least squares regression analysis. Fig. 3.19 shows the comparison
between the curve fits and the mean of the OxLim bounds. For a symmetric seabed (t; = t2), the
parabolic fit is symmetric about V = Vi/2 = V2/2, such that the horizontal load capacity is under-
predicted for V' < Vi/2 and over-predicted (slightly) for V' > Vi/2. This could be remedied by introducing

the non-integer exponents, 31, (2, B3 and (4, to augment the definitions of f; and fo to:

V B1 V B2 H
fi = —bi2 <71> <1—71> +E (3.7.6)

14 Bs 14 Ba H
for = =P (72> (1—72> A (3.7.7)
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However, for this choice of f; and fs, a problem arises if, for example, V is negative since f; and fo,
and their derivatives with respect to V and H, then possess imaginary components. While a converged
solution with negative V' is not permissible (since negative V is always bounded outside of the yield
surface), the evaluation of trial loads which lie outside of the yield surface are inevitably required by
any algorithm tasked with computing the load update. Hence, special treatment would be required to
avoid numerical difficulties arising from trial loads which possess an imaginary component. Therefore,
for pragmatic reasons, the simpler definitions for f; (Eq.3.7.2) and fy (Eq.3.7.3) were chosen to define
the yield function (in the piecewise manner given by Eq.3.7.1).

A further problem was encountered, however, in computing the best-fit values for Vi, Hy, V5 and
H, for t; > 0 and ty = 0. In these cases, the minimum least squares error was found by taking V5 to
be negative. This is problematic because it implies that for a particular combination of positive ¢; and
positive to, a zero value for V5 will be interpolated. V5 = 0 implies that fo — oo and, hence, numerical
difficulties will ensue. While a more elaborate choice of yield function could undoubtedly be conceived
to circumvent this problem, the following more pragmatic approach was adopted. For those cases with
V5 < 0, an optimization problem was formulated to find the combination of V5 and Hs which minimizes
the least squares residual error while enforcing V5 to be greater than some small threshold (typically,
0.001). This constrained optimization problem was solved with MATLAB’s ‘fmincon’ function (part of
the optimization toolbox) using the interior-point setting. This approach meant that some (slight) loss
in curve-fitting accuracy was accepted in order to allow for a robust implementation of the model.

Table 3.4 lists values for Vi, Hy, Vo and Hs for each combination of ¢; and f listed in Table 3.3,

as determined from the regression analyses. This look-up table is a constituent of the hardening law
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F1c. 3.21: Variations of V; and H; with #; = 7.

discussed in §2.11. Also included in Table 3.4 are the values of s/y'D2? and 0, for each pairing of ¢; and £
as well as R? and R3, the coefficients of determination for f; = 0 and f; = 0 respectively. Figs 3.20a and
3.20b are plots of R? and R3 against f; for all £5. These plots show that an acceptable parabolic fit was
obtained for all combinations of ¢, 3, ¢’ and J; indeed, the lowest R? value was 0.863 (for f; = t3 = 0.8,

¢' = § = 20°) and the lowest R3 value was 0.842 (for f; = 0.8, {5 = 0.4, ¢/ = § = 20°).

3.7.2 Trends in hardening parameter table

In the following, plots which show the dependence of the hardening parameters (as well as s/4'D? and
0.) on t; and t are presented and discussed. These plots help to explore further the relationship between
the geometry of the seabed surface and the size and shape of the instance of the yield surface for that

geometry. The findings presented in this section are also used in the next chapter to allow the influence

of the non-associativity to be included in the calibration of the proposed force-resultant model.

Trends for vertical penetration (t; = to)

The plots in Figs 3.21a and 3.21b show, respectively, the variation of V; and Hy with ¢; for a symmetric
seabed (i.e. one with #; = t5 such that V; = V5 and H; = H>) for all ¢’ and J. The trend lines in this
plot have been extrapolated to the origin since the yield surface degenerates to the point, (V, H) = (0,0),
(such that Vi = Vo = Hy = Hy = 0) for 1 = t5 = 0. If surface heave is neglected, #; (= t2) is the total
vertical penetration, w, (which, in turn, is equal to w,, if the elastic component of vertical displacement
is also neglected). Accordingly, these plots provide an indication of the rate of yield surface growth with
wy, during initial (virgin) vertical penetration. For each combination of ¢’ and §, an approximately linear
dependence of V; on #; (and, hence, wy) is evident. Likewise, H; also varies (approximately) linearly

with £;. Together, these observations imply that the yield surface grows in an approximately self-similar
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manner with wy. It is noteworthy that this finding was also found experimentally by Zhang [37], as
discussed in §2.7.2.

Fig. 3.22 contains two plots showing the same data as in Fig. 3.21 except that the ordinate in Fig. 3.22a
is Vi/¥1,0s (where V] o g denotes the values of V; for £; = £ = 0.8) and the ordinate in Fig. 3.24b is f1/f, 0.5
(where H 1,0.8 denotes the values of H, fort; =1ty = 0.8). The trend lines in this figure have again been
extrapolated to the origin. A close examination of these plots reveals that the proportional reduction
in the size of the yield surface with reducing #; is slightly more pronounced for lower ¢’. However, to
provide an overarching summary of the key trends evident from these plots, it would be appropriate
to conclude that common linear relationships appear to hold between both Vi/vi s and # (= ¢2) and
Hi/f, 5 and 11 (= t3) for all ¢’ and §. This means that while the strength parameters (¢' and J) exert
a strong influence on the absolute size of the yield surface (particularly ¢’), the relative growth of the

yield surface during vertical penetration is (approximately) the same for any pairing of ¢’ and 4.

Influence of 9 on the size and shape of the vield surface. for fixed #; (and vice-versa)

Figs 3.23a and 3.23b show, respectively, the variation of 6. and s/+/D? with #5 for £; = 0.4. These plots
confirm the conclusions reported in §3.6.5 (in reference to Figs 3.14-3.17), namely, that as ¢o reduces
(with #; constant), the extent of yield surface (as quantified by s/4'D?) reduces, and its asymmetry about
the V axis (as quantified by 6,.) increases. The influence exerted by 3 on $/y'D? and 0, is more marked for
ts < 0.1 which emphasizes the notion that the absence of any surcharge behind the pipe has a significant
effect on the combined (V, H) load capacity afforded by the seabed.

For t; = 0.4, Figs 3.24a and 3.24b show, respectively, the influence of t5 on the hardening parameters,
V1 and H;. These figures identify that 5 exerts a relatively weak influence on V; and H; (particularly

Hy) for t3 > 0.1. For example, the value of Hy for § = ¢/ = 40° and £y = 0.4 is within 1.2% of its value
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Fi1G. 3.23: Variations of s/4'D? and 0, with Z, for £; = 0.4.

for to = 0.1. This finding implies that — although the overall dimension of the yield surface reduces with
reducing #; — the size and shape of its f; = 0 portion (as defined by V; and Hj) is far less sensitive to
to (at least for to >0.1). However, as ts approaches zero, its influence on both Vi and H; increases (and
this influence becomes more pronounced with increasing ¢'). For example, for § = ¢/ = 20°, Hy is 73.7%
of its £y = 0.4 value for ¢, = 0 while for ¢’ = § = 40°, H; is 69.6% of its to = 0.4 value for {5 = 0.

The two plots in Fig.3.25 are similar to those in Fig.3.24 except that the ordinate of the plot in
Fig.3.25a is V1/V1 0.4 (where ‘7170_4 denotes the value of Vj for t; = {5 = 0.4) while the ordinate of the
plot in Fig.3.25b is H1/f 04 (where Hj g4 denotes the value of Hy for £; = ¢ = 0.4). Under this
normalization, the data are seen to collapse onto (approximately) a common curve. Importantly, this
finding — together with that deduced from Fig. 3.22 — implies that the relative change in the dimensions
of the yield surface due to a change in #; and ¢y is approximately the same for two alternative pairings
of ¢ and 4.

The data plotted in Figs 3.24 and 3.25 are applicable only for £; = 0.4. However, the plots in Fig. 3.26
enable the trends to be assessed for for all #;. Figs 3.26a and 3.26b show the variation of V, with £, < 0.6
(Fig. 3.26a for a fully rough interface, Fig.3.26b for a semi-rough interface) while Figs 3.26¢ and 3.26d
show the variation of Hy with £ < 0.6 (Fig. 3.26¢ for a fully rough interface, Fig. 3.26d for a semi-rough
interface). For each pairing of ¢’ and &, and for each t, the values for V5 and Hy are grouped within
close proximity to each other for all ;. This trend adds support to the notion that failure mechanisms
accompanying (V, H) yield points which plot on the fo = 0 contour of the yield surface (but not at either

apex) are predominantly confined to the left of the pipe centre and, hence, are independent of ;.

Summary

The two key findings from the above discussion can be summarised as follows.
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1. The hardening parameters, Vi and Hy, which define the f; = 0 portion of the yield surface (over

which the flow vectors have a positive horizontal component), are weak functions of fo (at least for

o > 0.1) — and vice-versa regarding the influence of #; on V5 and Hy.

2. For given values of ¢/ and 4, the influence of changing ¢; and/or t5 (relative to some fixed values) is

to scale the dimensions of the yield surface by a set of constants.

Together, these two findings imply that all yield points, for £; > 0.1, which plot on the f; = 0 portion

of the yield surface should collapse onto a common curve in V/Vi symm:H/H1 symm space (where VLsymm

and H 1,symm are, respectively, the values of Vi and H; when %5 is set to take the same value as t1). This

hypothesis is broadly confirmed by Fig.3.27 which contains a plot, in V/Vi symm : #/H1 symm space, of all

yield points which have flow vectors with a positive horizontal component (for ¢o > 0.1). While there

is some spread in the data, the yield points do tend to plot within close proximity to a common curve.
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F1G. 3.26: Dependences of V5 and Hy on # < 0.6 for all ;.

The scatter is notably more prevalent for high ¢’, as is consistent with the discussion made in reference
to Fig.3.17. The equivalent hypothesis for the fo = 0 portion of the yield surface is that all yield points
which possess flow vectors with negative horizontal components should collapse onto a common curve in
V/Va,symm B/ Ha symm space (where Va gymm and Hay gymm are, respectively, the values of V5 and Hy when
t1 is set to take the same value as t3). Fig.3.17 is a plot in V/Va symm : H/Ha symm for all yield points with
flow vectors with negative components (for £5 > 0.1). The scatter in this plot is more discernible than

in Fig. 3.27, although the yield points are nevertheless grouped around a common curve.

Implications for the proposed force-resultant model

The above discussion hints towards the formulation of a slightly more elegant version of the model
proposed in §2.11. Namely, V; and H; could be assumed to be functions solely of #; and, likewise, V5
and Hy could be assumed to be functions solely of £. This finding was not anticipated at the outset of
the work although, for future investigations, it is valuable since it opens the possibility for more efficient
model calibration (since data for (V, H) yield points with flow vectors possessing positive horizontal

components need only be sought for t; = t9 rather than for all ¢; > t5). Alternatively, it opens up the
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possibilities of carrying out a more detailed calibration of the model, by either using finer sub-divisions
of t1 and %5 or by introducing a third parameter to model non-homogeneity of the seabed’s strength, for
example.

However, the fact that the model picks up the (relatively weak) influence of £y on Vi and H; (and
the similarly weak influence of £; on V5 and Hs) is not in itself a drawback. Indeed, it should increase
the realism of the model’s load:displacement predictions. This is particularly true for the important case
when #, approaches zero, in which case the dependence of V; and H; on t becomes more significant —
especially for high ¢’. Analogous statements hold regarding the dependence of #; on V5 and Hy. In any
case, the above exploration of the trends is valuable for the calibration of corrections to the values of the

hardening parameters due to the inclusion of non-associativity, as will be discussed in the next chapter.
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3.8 Concluding comments

In this chapter, the principles of finite element limit analysis (FELA) were outlined together with a
brief summary of the operation of OxLim. Plane strain FELA analyses to determine lower and upper
bounds to the V:H yield surface for a pipe resting on an idealized seabed were reported. The idealized
geometry of the seabed surface, as specified by #; and t5, matched the assumptions inherent to the
proposed force-resultant model and represented an idealization of the surface geometry expected for
a pipe undergoing vertical penetration, lateral displacement and the transition between the two. For
each combination of t1, {5, ¢’ and §, OxLim analyses were carefully automated so as to generate an even
distribution of yield points in the V:H plane. Based on the distribution of yield points, equations defining
a pair of parabolas, fi; and fy, were chosen for the yield function. Regression analyses were reported
to determine values for the dimensionless hardening parameters, V;, Hy, V5 and Hs, over a range of
values for 1, 9, ¢’ and §. The relationship between the distribution of yield points and the mechanisms
accompanying failure was also discussed. In particular, the data tend to suggest that independent failure
mechanisms exist for yield points which plot on the f; = 0 and fy = 0 portions of the yield surface

(although this trend was found to be less pronounced when #; or 5 approached zero).
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0.2 0.0 35.0 35.0 4.310 3.669 0.927 0.097 0.970  0.999 3.169 13.664 04 0.2 35.0 35.0 20.022 12.821 13.856 5.326 0.910 0971 17.230 5.234
0.2 0.0 40.0 20.0 8.579 6.829 1.318 0.092 0.986  0.999 6.124 13.715 04 0.2 40.0 20.0 34.394 21.041 24.702 9.711 0.936 0979 | 29.916 4.654
0.2 0.0 40.0 40.0 9.979 7.551 2.936 0.389 0.966  0.998 7.496 11.267 04 0.2 40.0 40.0 45.718 26.292 32.881 11.987 | 0.924 0.961 | 39.818 4.326
0.2 0.1 20.0 10.0 1.048 0.691 0.645 0.243 0.971  0.994 0.860 6.960 04 04 20.0 10.0 2.526 1.875 2.526 1.875 0.952  0.952 2.526 0.000
0.2 0.1 20.0 20.0 1.213 0.816 0.772 0.290 0.964  0.992 1.014 6.509 04 04 20.0 20.0 2.964 2.098 2.964 2.098 0.940  0.940 2.964 0.000
0.2 0.1 30.0 15.0 3.976 2.361 2.711 1.003 0.961  0.988 3.386 5.154 04 04 30.0 15.0 8.605 5.657 8.605 5.657 | 0.942  0.942 8.605 0.000
0.2 0.1 30.0 30.0 4.876 2.901 3.429 1.285 0.959  0.969 4.207 4.765 04 04 30.0 30.0 10.891  6.459 10.891 6.459 0.924 0924 | 10.891 0.000
0.2 0.1 35.0 17.5 8.464 4.717 5.996 2.149 0.965  0.982 7.312 4.420 04 04 35.0 17.5 17.431 10.388 17.431 10.388 | 0.946 0.946 | 17.431 0.000
0.2 0.1 35.0 35.0 10.488  5.860 7.773 2.823 0.954 0977 9.240 3.866 04 04 35.0 35.0 22.595 12.302 22,595 12.302 | 0.911 0.911 | 22.595 0.000
0.2 0.1 40.0 20.0 19.612 10.081 14.457 4.983 0.964 0977 | 17.192 3.682 04 04 40.0 20.0 38.419 20.692 38.419 20.692 | 0.944 0.944 | 38.419 0.000
0.2 0.1 40.0 40.0 24.499 12.820 18.923 6.668 0.959 0973 | 21.936 3.175 04 04 40.0 40.0 51.905 25.379 51.905 25.379 | 0.920 0.920 | 51.905 0.000
0.2 0.2 20.0 10.0 1.200 0.686 1.200 0.686 0.970  0.970 1.200 0.000 06 0.0 20.0 10.0 1.159 2.486 0.027 0.001 0.960 0.973 0.905 42.020
0.2 0.2 20.0 20.0 1.422 0.793 1.422 0.793 0.956  0.956 1.422 0.000 06 0.0 20.0 20.0 1.367 2.891 0.030 0.001 0.946  0.979 1.068 40.857
0.2 0.2 30.0 15.0 4.533 2.345 4.533 2.345 0.960  0.960 4.533 0.000 06 0.0 30.0 15.0 4.685 7.186 0.069 0.001 0.962 0.991 3.351 30.465
0.2 0.2 30.0 30.0 5.611 2.881 5.611 2.881 0.936  0.936 5.611 0.000 0.6 0.0 30.0 30.0 5.657 8.382 0.080 0.001 0.957  0.993 4.075 28.551
0.2 0.2 35.0 17.5 9.639 4.677 9.639 4.677 0.957  0.957 9.639 0.000 0.6 0.0 35.0 17.5 9.488 12.756  0.110 0.001 0.966  0.995 6.728 25.985
0.2 0.2 35.0 35.0 12.358 5.874 12.358 5.874 0.945 0.945 12.358 0.000 0.6 0.0 35.0 35.0 11.720 14.992 0.131 0.001 0.951  0.996 8.397 23.770
0.2 0.2 40.0 20.0 22.378 10.086 22.378 10.086 | 0.953 0.953 | 22.378 0.000 0.6 0.0 40.0 20.0 20.438 24.195 0.181 0.001 0.971 0.998 | 14.522  21.992
0.2 0.2 40.0 40.0 29.166 12,961 29.166 12.961 | 0.944 0.944 | 29.166 0.000 06 0.0 40.0 40.0 26.203 28.606 0.222 0.001 0.955 0.998 | 18.755  19.567

TABLE 3.4: Values for the hardening parameters (and R?, R3, s/+'p?, 6..) for various 1, 2, ¢’ =1 and § (continued over).
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ot [ () () Vi H, Va Hy RZ Ry | s/'D* 6. (°) o ot | () 6(°) Vi H, Vo Ho R? RZ | s/vD*> 0. (°)
06 0.1 20.0 10.0 2.464 3.408 0.524 0.098 0.934 0.989 1.857 22.921 0.8 0.1 20.0 10.0 2.949 5.277 0.317 0.032 0.904 0.986 2.336 28.591
06 0.1 20.0 20.0 2.940 3.905 0.625 0.117 | 0.922 0.994 2.186 22.628 0.8 0.1 20.0 20.0 3.528 6.012 0.426 0.049 0.877  0.989 2.740 28.327
06 0.1 30.0 15.0 8.679 9.276 2.910 0.725 0.945  0.996 6.576 16.238 0.8 0.1 30.0 15.0 10.566 13.512 2.671 0.525 0.911  0.996 8.061 19.857
0.6 0.1 30.0 30.0 10.891 11.042 3.526 0.797 0.931  0.995 8.190 15.623 0.8 0.1 30.0 30.0 13.344 15.890 3.144 0.553 0.913  0.996 9.977 19.321
0.6 0.1 35.0 17.5 17671 16.339 6.632 1.672 0.953 0995 | 13.405 13.661 0.8 0.1 35.0 17.5 21.324  23.093 6.492 1.388 0.937 0996 | 16.155  16.507
0.6 0.1 35.0 35.0 22.661 19.880 8.303 1.890 0.947 0993 | 17.147 12.976 0.8 0.1 35.0 35.0 27.279 27.857 7.959 1.529 0.936 0995 | 20.482 15.829
06 0.1 40.0 20.0 38.712  31.249 16.210 4.086 0.941 0993 | 29.679 11.334 0.8 0.1 40.0 20.0 46.222  42.420 16.239  3.582 0.946  0.995 | 35.024 13.594
06 0.1 40.0 40.0 50.539 39.041 21.149 4.876 0.939 0.989 | 38.969 10.592 0.8 0.1 40.0 40.0 60.396 52.729 20.455 3.993 0.930 0.992 | 45.672 12.930
0.6 0.2 20.0 10.0 3.001 3.528 1.269 0.460 0.938  0.993 2.362 15.961 0.8 0.2 20.0 10.0 3.643 5.548 1.109 0.306 0.876  0.984 2.900 21.564
0.6 0.2 20.0 20.0 3.573 4.002 1.475 0.520 0.906  0.993 2.772 15.875 0.8 0.2 20.0 20.0 4.362 6.240 1.310 0.367 0.864  0.990 3.395 21.547
0.6 0.2 30.0 15.0 10.128  9.505 5.259 2.018 0.921  0.990 8.139 11.240 0.8 0.2 30.0 15.0 12.382 13.800 5.251 1.736 0.901  0.992 9.772 14.795
06 0.2 30.0 30.0 12.822 11.258 6.471 2.300 0.901 0.987 | 10.181 10.956 0.8 0.2 30.0 30.0 15.659 16.262 6.365 1.945 0.911 0.991 12.144  14.512
0.6 0.2 35.0 17.5 20.223 16.842 11.231 4.150 0.914 0.988 | 16.448 9.339 0.8 0.2 35.0 17.5 24.446 23.633 11.480 3.813 0.924 0.991 19.408  12.223
06 0.2 35.0 35.0 26.376 20.566 14.294 4.815 0.905 0.983 | 21.279 9.003 0.8 0.2 35.0 35.0 31.773  28.622 14.314  4.296 0.896 0.987 | 24.883 11.885
0.6 0.2 40.0 20.0 43.923 32217 25971 9.122 0.916  0.987 | 36.211 7.641 0.8 0.2 40.0 20.0 52.457 43.699 26.761 8.602 0.908 0.989 | 42.025 9.967
0.6 0.2 40.0 40.0 59.114 40.138 33.975 10.744 | 0914 0.977 | 48.259 7.365 0.8 0.2 40.0 40.0 70.129 54.478 34.445 9.846 0.908 0.983 | 55.626 9.609
06 0.4 20.0 10.0 3.576 3.584 2.668 1.672 0.908 0.979 3.183 6.620 0.8 0.4 20.0 10.0 4.480 5.625 2.660 1.423 0.867  0.985 3.803 12.030
06 0.4 20.0 20.0 4.209 4.039 3.096 1.854 0.898  0.976 3.723 6.641 0.8 0.4 20.0 20.0 5.265 6.337 3.072 1.600 0.842  0.988 4.429 12.048
06 0.4 30.0 15.0 11.606 9.721 9.262 5.381 0.890 0.966 | 10.549 4.496 0.8 0.4 30.0 15.0 14.290 14.230 9.622 5.087 | 0.875 0.973 | 12.357 8.160
06 0.4 30.0 30.0 14.720 11.243 11.508 6.089 0.871 0.954 | 13.251 4.477 0.8 0.4 30.0 30.0 18.138 16.530 11.803 5.698 0.855  0.966 | 15.451 8.128
0.6 0.4 35.0 17.5 22.835 17.164 18.637 10.067 | 0.914 0.962 | 20.913 3.701 0.8 0.4 35.0 17.5 27.822 24301 19.500 9.563 0.876  0.972 | 24.283 6.629
06 0.4 35.0 35.0 30.176  20.217 24.058 11.595| 0.885 0.948 | 27.331 3.686 0.8 0.4 35.0 35.0 36.609 28.969 24.832 11.021 | 0.885 0.969 | 31.486 6.573
06 0.4 40.0 20.0 49.343  32.128 40.950 20.309 | 0.925 0.960 | 45.390 3.034 0.8 0.4 40.0 20.0 59.062 44.322 42.722 19.511 | 0.888 0.968 | 51.828 5.419
06 0.4 40.0 40.0 67.176 39.918 54.813 24.318 | 0.890 0.945 | 61.353 2.991 0.8 0.4 40.0 40.0 80.142 54.845 56.454 22,924 | 0.867 0.961 | 69.607 5.284
06 0.6 20.0 10.0 3.941 3.413 3.941 3.413 0.925 0.925 3.941 0.000 0.8 0.6 20.0 10.0 5.031 5.570 4.079 3.068 0.862  0.967 4.618 5.457
06 0.6 20.0 20.0 4.577 3.789 4.577 3.789 0.909  0.909 4.577 0.000 0.8 0.6 20.0 20.0 5.836 6.237 4.710 3.402 0.855  0.959 5.346 5.371
06 0.6 30.0 15.0 12.661  9.560 12.661  9.560 0913 0.913 | 12.661 0.000 0.8 0.6 30.0 15.0 15.718 14.324 13.404 9.070 0.858 0.943 | 14.669 3.572
0.6 0.6 30.0 30.0 15.862 10.740 15.862 10.740 | 0.912 0912 | 15.862 0.000 0.8 0.6 30.0 30.0 19.729 16.045 16.596 10.306 | 0.871  0.931 18.272 3.517
0.6 0.6 35.0 17.5 24.823 16.681 24.823 16.681 | 0.919 0.919 | 24.823 0.000 0.8 0.6 35.0 17.5 30.380 24.029 26.215 16.098 | 0.873  0.942 | 28.445 2.939
0.6 0.6 35.0 35.0 32.139 19.513 32.139 19.513 | 0.899 0.899 | 32.139 0.000 0.8 0.6 35.0 35.0 39.275 28.302 33.620 18.623 | 0.882 0.926 | 36.644 2.810
06 0.6 40.0 20.0 52.765 31.710 52.765 31.710 | 0.928 0.928 | 52.765 0.000 0.8 0.6 40.0 20.0 63.536 44.043 55.724 31.081 | 0.910 0.942 | 59.848 2.335
06 0.6 40.0 40.0 71.400 38.582 71.400 38.582 | 0.914 0.914 | 71.400 0.000 0.8 0.6 40.0 40.0 85.643 53.213 74.378 37.338 | 0.896  0.925 | 80.276 2.256
0.8 0.0 20.0 10.0 1.329 3.939 0.027 0.001 0.885  0.940 1.241 48.471 0.8 0.8 20.0 10.0 5.406 5.253 5.406 5.253 0.872 0.872 5.406 0.000
0.8 0.0 20.0 20.0 1.630 4.519 0.030 0.001 0.876  0.965 1.465 47.154 0.8 0.8 20.0 20.0 6.214 5.794 6.214 5.794 0.863 0.863 6.214 0.000
0.8 0.0 30.0 15.0 5.839 10.678  0.073 0.001 0.935 0.984 4.434 34.248 0.8 0.8 30.0 15.0 16.833 13.961 16.833 13.961 | 0.871 0.871 16.833 0.000
0.8 0.0 30.0 30.0 7.104 12.402  0.083 0.001 0.930  0.989 5.347 32.532 0.8 0.8 30.0 30.0 20.793 15.482 20.793 15.482 | 0.879 0.879 | 20.793 0.000
0.8 0.0 35.0 17.5 11.758 18.352 0.116 0.001 0.943 0.991 8.670 28.990 0.8 0.8 35.0 17.5 32.344  23.549 32.344 23.549 | 0.896 0.896 | 32.344 0.000
0.8 0.0 35.0 35.0 14.589 21.621 0.136 0.001 0.941 0.993 | 10.736  27.056 0.8 0.8 35.0 35.0 41.444 27.401 41.444 27.401 | 0.886  0.886 | 41.444 0.000
0.8 0.0 40.0 20.0 25.191 33.656 0.190 0.001 0.952  0.995 | 18.270 24.399 0.8 0.8 40.0 20.0 67.163 43.294 67.163 43.294 | 0914 0.914 | 67.163 0.000
0.8 0.0 40.0 40.0 32.465 39.825 0.228 0.001 0.945 0996 | 23.364  22.285 0.8 0.8 40.0 40.0 89.473 52.119 89.473 52.119 | 0.888 0.888 | 89.473 0.000

TABLE 3.4: Values for the hardening parameters (and R?, R%, s/+' D2, 0..) for various 1, f2, ¢/ =1 and § (continued).
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4

Displacement finite element analyses

4.1 Introduction

Chapter 3 reported the results of limit analysis calculations, which were carried out to generate
data to aid the definition of the yield function, f, and to calibrate the hardening laws. These analyses
were undertaken with a perfectly plastic constitutive model which obeys the Mohr-Coulomb (MC) yield
criterion and the associated flow rule (¢ = ¢'). However, it was recognized that both theoretical reasoning
and experimental evidence indicate the inappropriateness of assuming an associated flow rule to predict
the direction of incremental plastic strain for a frictional material. This chapter reports the findings of
a numerical investigation tasked with determining the influence of a non-associated flow rule (¢ < ¢/)
on the components of the proposed force-resultant model (namely, the yield function, f, the hardening
laws, and the macroscopic flow rule).

The bound theorems only hold in a very much weakened sense when a non-associated flow rule
is assumed and — unlike the analyses reported in Chapter 3 — there is no well-established, rigorous
method to directly compute the collapse load. Indeed, even the existence of a unique collapse load for a
perfectly plastic, non-associated structure has yet to be proven. Accordingly, it was necessary to attempt
to simulate the plane strain indentation (in pseudo-time) of a ‘wished-in-place’ pipe into a seabed of
prescribed surface geometry. From an inspection of the resultant load:displacement path, inferences were
then to be drawn on the response at yield (e.g. the identification of a (V,I:[) yield point, and the
orientation of the corresponding flow vector). The well-known, small-strain, displacement FE method
was chosen to carry out these simulations.

The chapter begins with an outline of the boundary value problem (BVP) that was considered during
this phase of the work, together with a description of the FE solution procedure. A theoretical discussion
is then provided on the implications of the assignment of a non-associated flow rule on the uniqueness
and well-posedness of the BVP. This is followed by a review of previous investigations that attempted
to solve similar BVPs while also assuming a non-associated flow rule. The procedures that were used to

generate the results reported in this chapter are then detailed. Next, a series of analyses is presented to
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validate the chosen methods and procedures against the OxLim-derived solutions for the limiting case of
associated flow. Then, the results obtained for the analyses carried out using a non-associated flow rule
are presented. The chapter concludes with analysis of the results, focusing on the amendments to the
components of the proposed force-resultant model set out in Chapter 3 as well as the formulation of the

flow rule of the force-resultant model.

4.2 BVP formulation and solution procedures

As shown in Fig.4.1, the geometry of the idealized seabed boundary was the same as that used in
the OxLim analyses. Furthermore, the same boundary conditions were assigned on the base of the soil
domain (EF) and the free surface (AB and CD). However, in the Abaqus analyses, DE and FA were
placed on roller, rather than encastré, supports (reasons for which are outlined in §4.4).

Due to the inherent differences between FELA and the FE method, the analyses reported in this
chapter differ from those in Chapter 3 since the loading was applied incrementally in time. Specifically,
the loading was carried out in two, successive steps: the first to account for the soil’s self-weight by
increasing the vertical body force component uniformly over ABCDEF, and the second to increase the
boundary displacements over BC to simulate displacement-controlled penetration of the pipe into the
idealized seabed. However, since no rate dependence was included in the constitutive definition of the
soil, the analyses were insensitive to the rate at which the body loads and boundary displacements were
applied.

The objective of each analysis was to obtain a mapping between the histories of integrated boundary
tractions and displacements along BC, thus enabling the resultant load:displacement path to be deduced.
The problem was analysed within the framework of small-strain, elastic-plastic continuum mechanics
and, accordingly, the prescribed history of tractions, ¢;, and boundary displacements, o 4, were required

to satisfy the following BVP (which is expressed in tensor notation, using Einstein summation i.e.



Chapter 4: Displacement finite element analyses 112

summation over a repeated subscript):

0oij

5r, Thi=0 in Q (4.2.1)
€ij = % (g;‘] + ZZJ> in 0 (4.2.2)

50i; = Dijrber in O (4.2.3)
oin; = fj on Sy (4.2.4)

Ui = U on S,. (4.2.5)

Eq.4.2.1 is a statement of equilibrium, where o;; is the Cauchy stress tensor and € is the volume of
ABCDEF; Eq.4.2.2 is a statement of compatibility between the displacements, 4;, and the strains,
€ij; Bq.4.2.3 is the constitutive relationship, where D;jj; is the (incrementally linear) stiffness tensor;
Eq.4.2.4 is a statement of the traction (or natural) boundary conditions, where n; is the outward normal
to the boundary and Eq.4.2.5 is a statement of the displacement (or essential) boundary conditions. On
assuming an elastic-plastic constitutive model, defined by a yield function, f., and a plastic potential,

ge, Diji is given in piecewise form according to:

D for f.(oi;) <O
Dijm=14 "M ’ (4.2.6)

Dl(;gl) for fe (i) =0,

where Die)

ikl and D) are, respectively, the elastic and elastic-plastic stiffness tensors. On further assu-

ijkl
ming isotropic elasticity, Di;,)cl is given as:
D) =26 (2 (Oik0j1 + 0qdjk) + — 50k ) (4.2.7)
igkl 2 J J 1— 92 J
where G is the shear modulus and v is Poisson’s ratio. By invoking the consistency condition (6 f, = 0),

it is straightforward to show that Dz(]eil) is given as:

(e) dg. Ofe. D(e)k[
e e M OG , OO pa
Dz'(jil) - Di(jl)d T O )pqag (4.2.8)
C D e C
bt 0ors "M Aoy,
where:
h— — dfc 0gc

del) 0oij

is the hardening modulus (h>0 for strain-hardening, h—0 for perfect plasticity and h<0 for strain-
softening).

The continuous displacement FE method, as implemented in the commercially-available software,
Abaqus [18], was used to solve the BVP given above. In this well-established method, the displacements,
U;, are taken as the primary variables for which an approximate solution, @, is sought. On discretising
() into finite elements, the approximating distribution of displacement, @}, is assumed as a piecewise

polynomial (of a prescribed order). A node located on an element edge (or corner) is common to all
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elements which share that edge (or corner). Hence, @] possess Cy continuity and the nodal displacements
are the unknowns to be found. Using bold-face notation for vectors and matrices, the FE equations, for

a quasi-static problem, can be expressed as follows:
f(Uy=P-F=0 (4.2.9)

where U is the vector of nodal displacements, P is the vector of internal nodal forces:

NE
_ T
P=>"[B'od (4.2.10)
1 o

and F is the vector of external nodal forces:

NFE NFE
_ TF T
F=> [ NS+ [ N'bdQ.. (4.2.11)

1 St,e 1 Qe

Here, N is the vector of the coefficients of the shape functions, B is the matrix linking the strains to the
nodal displacements, €}, and S, are, respectively, the volume and surface area of an element and NE is
the number of elements in the mesh. A derivation of these equations from original BVP (Eqs 4.2.1-4.2.5)
is provided by de Souza Neto et al. [86] and Zienkiewicz and Taylor [87], where the precise form of N
and B is elaborated. By virtue of the minor symmetries, D;;x; = Djiji and Djjp; = Dy, and the major

symmetries, D;j = Dyij, the constitutive relationship (Eq.4.2.3) can be expressed in Voight notation

as:
00 = Dde. (4.2.12)
Substitution of Eq.4.2.12 into Eq.4.2.10 gives:
NE
P= Z/BTDBUdQe (4.2.13)
LG,
such that Eq.4.2.9 can be written as:
F=KU (4.2.14)
where:
NE
K = Z/BTDBdQe (4.2.15)
1
Qe

is the global incremental stiffness matrix.

The assignment of an elastic-plastic constitutive law implies a non-linear dependence of stress on
strain. Consequently, the relationship between the nodal loads and displacements is also non-linear (i.e.
K is not constant). Hence, the step-change in nodal displacements, AU, arising from a step-change in the
prescribed external loads, AF, cannot be computed exactly but, rather, an approximate solution must be
sought. The Newton-Raphson (NR) algorithm is the most commonly used numerical scheme and is the
Abaqus default. Alternative numerical schemes include: (i) the initial stiffness method which differs from
the NR scheme by maintaining the elastic stiffness matrix throughout all global equilibrium iterations;

(ii) the modified Newton-Raphson method in which the global stiffness matrix is only updated once
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per equilibrium iteration; (iii) visco-plastic methods which consider a rate-independent analysis as the
limiting case of a rate-dependent analysis; (iv) explicit approaches in which a solution for the next time-
step is computed without iteration, based upon a projection from the solution at the current time-step;
and (v) semi-explicit approaches which differ from fully explicit approaches in that the ‘out-of-balance’
stresses are computed at the end of each time-step and applied, in the opposite sense, before the start of

the next time-step.

4.3 Non-association

4.3.1 Theoretical discussion

Since the 1970s, several independent attempts have been made to carry out displacement FE analyses
to investigate the vertical loading of a flat footing resting on a perfectly plastic, non-associated soil. In
general, difficulties were reported in these analyses; either converged solutions could not be obtained or the
resultant load:displacement paths were found to contain spurious oscillations and lack mesh objectivity.
Since the flat footing problem is similar to the loading of a plane strain pipe section (the only difference
being the boundary geometry), a review of these investigations is valuable in that it provides insight into
the causes of the reported problems and enables the validity of the obtained results to be assessed. The
purpose of this section is to provide the theoretical preliminaries to this review.

When attempting to solve the BVP given by Eqs 4.2.1-4.2.5, it is desirable to know beforehand
whether or not unique solutions for the stresses, o;;, and strains, €;;, exist. Hill [88] showed that a

sufficient condition to ensure uniqueness of o;; and ¢;; is given as:
50’2']'562‘]‘ > 0, (4.3.1)

1.e. any material which generates positive second-order work will give unique solutions. Substitution of

the constitutive relation, Eq.4.2.3, into Eq.4.3.1 gives:
5€ijDz‘jk15€kl > 0, (4.3.2)

and, hence, if Djj;p; is positive definite, or equivalently if ijklzl/z (Dijrr + Diiij) (the symmetric part
of Djji1) is positive definite, then solution uniqueness is guaranteed. For a linear elastic constitutive

model, ijkl is always positive definite and, hence, solutions to linear elastic problems are always unique.

s

If plasticity is included in the constitutive description, the positive definiteness or otherwise of Dljkl is

conditional on both the assigned flow rule and the hardening modulus, h. For a constitutive model which

obeys the associated flow rule, it can be shown that ijkl is positive definite only for h>0 4.e. solution
uniqueness is guaranteed only in the hardening regime (although, for the limiting case of a perfectly
plasticity, h=0, it is just the strains that are not necessarily unique; the uniqueness of the stresses, on
the other hand, is certain; Jirasek & Bazant [77] outline a proof of this). If a non-associated flow rule

is assumed, uniqueness of neither the stresses nor the strains is certain for the perfectly plastic case.
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Indeed, it has been shown for several idealized loading regimes (e.g. Bigoni & Zaccaria [89] considered
axially-symmetric extension/compression) that if a non-associated flow rule is assumed, uniqueness is
guaranteed only if h exceeds some critical positive value i.e. a unique solution does not necessarily exist
over the entirety of the hardening regime. Accordingly, a numerical analysis using a perfectly plastic
constitutive model obeying a non-associated flow rule should be undertaken with an understanding that
the obtained solution is not necessarily one which is physically relevant — that is, the equilibrium path
may contain a bifurcation point after which the equilibrium branch which is followed (if the analyses can
be continued beyond bifurcation) may not be the critical one.

In the context of FE analyses, loss of uniqueness implies that the global stiffness matrix, K, is singular
(cf. de Borst et al. [90]). Accordingly, convergence difficulties are likely when using a NR iterative scheme
due to the ill-conditioned K which is encountered when approaching a bifurcation point. However,
providing the numerical difficulties arising from the ill-conditioned K can be circumvented (e.g. by using
the initial stiffness method), the inability to guarantee solution uniqueness is not the primary obstacle
to the use of perfectly plasticity constitutive model obeying a non-associated flow rule. After all, even
if the equilibrium path which is followed in a numerical analysis is not the critical one, it can still be
considered as an upper bound to the collapse load (and could be a less conservative estimate than the
one obtained by assuming associated flow). Rather, the more problematic issue centres on the related
issue of localization.

Localization is the tendency for plastic deformation to concentrate into narrow bands of a body, while
the surrounding regions unload elastically. In a soil mechanics context, localization is usually identified as
shear banding and experimental evidence for its existence is presented in the papers by Vardoulakis et al.
[91] and Gudehus & Niibel [92], amongst others.! While localization can be triggered by a prescribed
geometric or constitutive inhomogeneity, it can also emerge, for a particular class of materials, when a
homogeneous body is subjected to homogeneous boundary conditions. A straightforward example of this
behaviour is the widely cited example of a 1-D strain-softening bar loaded in tension, see Jirdsek & Bazant
[77], Zienkiewicz et al. [95], de Borst [96], Jirdsek [97]. From a mathematical perspective, localization is
only possible if the governing PDEs (Eqs 4.2.1-4.2.5), which are elliptic in the elastic regime, transition
to become parabolic or hyperbolic [77, 90, 96].2 The tendency for the elliptic character of the PDEs to be
lost at some point in the loading regime is dictated by the choice of constitutive model and, accordingly,
a significant body of research has been carried out to determine conditions on the elastic-plastic stiffness

tensor for localization to be admitted.

L Although less frequently encountered, dilation, compaction and tensile bands are all possible in a geotechnical
context (see DuBernard et al. [93] and Issen & Rudnicki [94]).

2The connection between the canonical form of the PDEs and localization is perhaps most readily understood
by noting that real characteristics exist only for parabolic or hyperbolic sets of PDEs, and a discontinuity is only
possible normal to a characteristic; see Nova [98] for an elaboration on this topic.
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Hill [99] (and later, in a variety of contexts, Mandel [100], Rudnicki & Rice [101], Rice [102] and
Imposimato & Nova [103]) showed that a necessary condition for localization is the vanishing of the

determinant of the ‘acoustic tensor’, which is given as:

Qjx = niDijpmy, (4.3.3)
where n; is the normal to the discontinuity. This is the so-called ‘loss of ellipticity’ criterion. Importantly,
as noted by de Borst et al. [90], Bigoni & Hueckel [104] and Ottosen & Ristinmaa [105], amongst others,
the following hierarchy exists: if D}, is positive definite (the sufficient condition for uniqueness), then
the determinant of the acoustic tensor cannot be zero and, hence, localization is excluded i.e. loss of
uniqueness is a necessary, but not sufficient, condition for localization. Accordingly, if a bifurcation point
is found in the equilibrium path, two scenarios are possible: the first is that the deformation pattern for
each bifurcation mode is continuous (this is widely termed a diffuse bifurcation), the second is that the
deformation pattern for one (or more) bifurcation mode(s) consists of localized plastic zones (a so-called
discontinuous bifurcation). The existence of discontinuous bifurcations is especially problematic because
the BVP contains no length-scale, and hence the width of the localized zone is undefined. Accordingly,
such problems are ill-posed; the BVP contains no information on the extent of the localized zone and,
yet, the solution depends entirely upon it. In fact, this is just one manifestation of the ill-posedness of the
above BVP when a perfectly plastic, non-associated constitutive model is prescribed; a topic discussed
further by Schaeffer [106], Valanis & Peters [107] and Benallal [108].

FE implementations of BVPs with localized solutions for strains (stresses) are known to lack mesh
objectivity, which is to say, solution convergence is not obtained on continual mesh refinement [77, 90,
96, 109]. This troublesome feature of FE analyses arises because the mesh fulfils the role of setting the

width of the localized zone. Two approaches to preserve mesh objectivity can be envisaged.

1. The first approach, termed regularization, is to supplement (explicitly or otherwise) the BVP with a
length-scale. Common regularization methods include the use of: (i) non-local or gradient plasticity,
see e.g. Lasry & Belytschko [110]; (ii) Cosserat continua, see e.g. de Borst [111], Ehlers & Volk [112];
and, for the dynamic formulation of the BVP: (iii) the inclusion of rate dependency and viscosity, e.g.
Sluys & De Borst [113|, Zhou & Randolph [114]. The intention of each of these methods is to smear
the discontinuity over a width which is independent of the element size.

2. The second approach is to use a numerical method which can accommodate discontinuities in the
displacement field. If this approach is pursued, the stress:strain constitutive relationship must be
supplemented with one defining the relationship between the tractions acting on the discontinuity and
the velocity jumps across it. The obvious difficulty in adopting this approach is that the distribution

of displacement discontinuities is not known in advance and, hence, a procedure is required either
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to adapt the mesh to allow the elements to align with the discontinuity, or, to augment the shape

functions to allow discontinuities to pass through an element.?

It is noteworthy that both of these approaches require the original form of the BVP given by Eqs 4.2.1-
4.2.5 to be augmented in some way, thus emphasizing the inherent ill-posedness which can arise following
the introduction of either strain-softening or non-association.

To summarise, the above discussion has emphasized the widely acknowledged benefits of the choice of
a constitutive model which generates positive second-order work; namely, uniqueness is guaranteed and
localization is impossible. Likewise, from a pragmatic viewpoint, the neutrally stable case (i.e. associated
flow and perfectly plastic) is unlikely to pose any problems in a FE setting since, if necessary, it can
be analysed as the limit of a positively-stable case. However, if the chosen constitutive model generates
negative second-order work, then loss of uniqueness and localization are possible. This is the case for the

perfectly plastic, non-associated constitutive description considered in this chapter.

4.3.2 Review of previous investigations

Table 4.1 summarises the salient features of several previous investigations that have used FE analyses
to determine the vertical load:displacement response of a flat footing on a perfectly plastic soil which
obeys a non-associated flow rule. Given the propensity for loss of uniqueness and localization (as outlined
above), a review of these investigations is helpful for understanding the implications of using a non-
associated flow rule in a displacement FE context.*

Zienkiewicz et al. [116] carried out one of the first investigations using the displacement FE method
but, due to limited computational resources, only very coarse meshes were used. Using the MC yield
criterion and a visco-plastic numerical algorithm (a choice driven by computational efficiency), limit loads
for the non-dilatant case (¢» = 0°) were found to be within 3% of their associated flow counterparts.
Griffiths [117] and de Borst & Vermeer [118] largely corroborated the findings of Zienkiewicz et al. [116]
and, accordingly, a consistent picture had begun to emerge; namely, that the assignment of a non-
associated flow rule brings about only a very slight reduction in the limit load. However, peculiarities
were noted in these investigations. De Borst and Vermeer [118] reported that a converged solution for
the limit load could not be attained for ¢’ = 40° and ) = 0°, and both Griffiths and de Borst & Vermeer
present vertical load:displacement plots which show substantial, irregular fluctuations.

The focus of De Borst & Vermeer [109] was not (directly) the bearing capacity of a flat footing;
instead, the biaxial test was simulated. They proposed a method to detect the first occurrence of a

zero, or marginally negative, eigenvalue of K (indicating loss of uniqueness) and, subsequently, perturb

3Wells & Sluys [115] have developed a promising approach to overcome this difficulty, although their focus
was cracking phenomena rather than localization brought about by strain-softening/non-association.

4The choice of MC, DP or Matsuoka as the yield criterion is not deemed to be of particular relevance, at least
in plane strain, since a match between the strength parameters of each criterion can be undertaken, if desired, to
enable comparisons to be drawn.
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TABLE 4.1: Salient features of previous investigations concerned with determining the bearing capacity of a flat footing resting on a perfectly plastic soil obeying a non-
associated flow rule and a yield criterion which is linear in v/J5:1; space.
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F1G. 4.2: Collapse mechanism for a flat footing in plane strain, as depicted by contours of maximum shear strain
increment; after Loukidis & Salgado [123].

the solution along the physically admissible equilibrium path (i.e. that which gives the lowest collapse
load). Indeed, multiple equilibrium branches were found to exist for the problems addressed in this
investigation and the proposed method was successful in that the critical branch was followed in each
case. However, when mesh sensitivity trials were carried out, a localized failure mode, entirely dependent
on the mesh, was observed for the biaxial test (i.e. the critical collapse load was found to vary with
the choice of mesh). Therefore, this investigation provides numerical evidence to support the hypothesis
that a non-associated flow rule can bring about localization.

Prompted by this investigation, amongst others, Griffiths [117] addressed localization arising from
either strain-softening or non-association but, without much foundation, claimed that “the accurate
computation of collapse loads does not require such mesh refinement”. Given that, for a constitutive model
defined by a non-associated flow, even the existence of a unique collapse load cannot be determined, let
alone its value, this seems to be an optimistic claim. Although Griffiths demonstrates that a FE analysis
for a weightless soil and ¢’ = 40°, ¢ = 0° (the case for which a converged solution could not be attained
by de Borst & Vermeer [118]) can reach completion with a coarse mesh, a constant yield load is not
established and mesh sensitivity analyses are not reported. Manoharan & Dasgupta [120] later extended
the analysis of Griffiths over the parameter range, ¢ < 35° and 0 < ¢ < ¢/, but, again, fail to report
any results to confirm mesh objectivity.

Frydman & Burd [121] reported that converged solutions could not be obtained when using the NR
scheme if there is a significant difference between ¢’ and 1. It is likely that the ill-conditioned K is
the cause of the convergence difficulties reported in this investigation. Clausen & Krabbenhoft [122]
and Loukidis & Salgado [123] added support to this claim since their analyses using the NR scheme
also suffered from convergence difficulties, at least when a fine mesh (one with 1500 degrees of freedom)
was used. Greater success was reported by Clausen & Krabbenhoft [122] when a semi-explicit solution
scheme was used. However, the load:displacement paths lacked mesh objectivity and the limit loads
were reported to fluctuate with further vertical penetration. Therefore, this investigation suggests that
localization is evident within this problem, at least for some pairings of ¢’ and ).

Loukidis & Salgado [123] also report the results of analyses using the initial stiffness solution scheme.

Duplicates of their contour plots depicting the spatial distribution of incremental plastic strain (for both
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associated and non-associated cases) are shown in Fig.4.2. The assignment of the associated flow rule
is seen to give a smooth deformation pattern enclosed within a confined region, the extent of which
is in close agreement with the extent of the characteristic net which extends over the yielded zone,
as determined using the program, ABC (Martin [83]). In contrast, the spatial distribution of plastic
strain for the non-associated case consists of narrow localized regions within which plastic straining is
confined. Fluctuations in the load:displacement response about a consistent yield load were, again, found
to exist, and Loukidis & Salgado infer that these fluctuations are due to the successive formation and
disappearance of shear bands. Results of mesh sensitivity analyses are not reported, but it is stated that,
on mesh refinement, the yield load reduces. Importantly, the yield loads are found to be approximately
30% lower than their associated counterparts, which is a conclusion in contradiction with those of the
early studies (e.g. Zienkiewicz et al. [116] and Griffiths [117]). This discrepancy is likely to be due to the
very coarse meshes used in the early studies, which had the effect of smearing the localized deformation
over a width of the order of an element. Accordingly, Griffiths’ 1989 statement, given above, seems to
be inappropriate and the advance of greater computer resources has shown, within a FE setting, that
localized deformation modes can arise due to the adoption of a non-associated flow rule. Unfortunately,
several leading text-books (e.g. Smith and Griffiths [124] and de Souza Neto et al. [86]) present a
somewhat incomplete treatment on this topic since they report displacement FE analyses assuming
the non-associated flow rule with little or no elaboration on the propensity for loss of uniqueness or
localization. The analyses presented in these texts usually make use of very coarse meshes (except at

locations of stress singularities) and, hence, are similar to those of the early published studies.

4.4 Methods and procedures

4.4.1 Displacement FE analysis, without regularization

The discussion in §4.3 identified that, with a non-associated flow rule, the displacement FE method
is not able to generate localized solutions which are mesh objective. The concept of regularization to
alleviate mesh dependence was outlined, and it is acknowledged that regularization has the potential to
increase the rigour of any FE analysis for which a localized solution is found to exist. However, for the
regularization procedure to operate as desired, the chosen length-scale limiter (which, depending on the
method of regularization, is not always prescribed directly) must be greater than the width of an element
located in the localized zone. Accordingly, since the thicknesses of shear bands in soils are of the order
of 10-50 times the mean grain diameter [125], an extremely fine mesh (relative to the pipe diameter)
would need to be used and hence the analysis would be extremely computationally expensive. Of course,
a mesh-objective analysis could be contrived using a coarse mesh if the length-scale limiter were chosen
to be some value greater than the minimum element width. However, since there is then little physical

motivation for the choice of length-scale limiter, the justification for devoting the significant amount of
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time needed to implement a regularization method becomes more questionable. For these reasons, it
was decided that FE analyses would be carried out without a means to regularize the continuum. While
this leads to a substantially more straightforward numerical implementation, it is acknowledged that all
analyses presented subsequently for which localized solutions exist are mesh dependent. Importantly,
this is not to say that the results are meaningless. Indeed, in §4.5.2, it will be shown that increasing
the fineness of the mesh serves to reduce the post-yield load (a finding which is consistent with that of
Loukidis & Salgado [123]) and, hence, the results presented subsequently can be assured to be conservative

estimates relative to those which would be attained if a regularized continuum had been used.

4.4.2 Software selection

The implicit version of Abaqus (Abaqus/Standard, release 6.7-1) was used to carry out the analyses
reported in this chapter. There are two features of Abaqus which made it an appealing software choice
for this investigation (in addition to its availability within the University of Oxford). The first was the
flexibility to formulate an analysis using either: (i) the in-built graphical user interface, Abaqus/CAE,
or (ii) by submitting a text (.inp) file from the command line. The second was the ability to write a
bespoke constitutive definition (a ‘User-defined Material’ or UMAT). Both of these features were used

in this investigation.

4.4.3 Initial stiffness method and constitutive model

Trial analyses confirmed that converged solutions could not be obtained when the non-associated
flow rule and the NR solution scheme were used. Indeed, the Abaqus message (.msg) file reported that
negative eigenvalues were encountered part-way through each analysis, implying that a bifurcation point
had been reached. This finding is consistent with those reported in the investigations reviewed in §4.3.2.
Accordingly, to allow analyses assuming the non-associated flow rule to reach completion, the initial
stiffness solution method was used.

Abaqus does not possess an in-built facility to maintain a constant K throughout all pseudo time-
steps. Consequently, a UMAT was written to: (i) carry out the numerical integration of the rate equations
(i.e. to perform the required stress update from a given increment in the strains), and (ii) return the

elastic stiffness matrix, D, in the stress:strain relation, o = Dde, where, for plane strain conditions:

1—v v 0
v v 0
p-_2¢ , (4.4.1)
(1—2v) v 1—v 0
0 0 (1=2v)/2

00 = (0045 00yy 60, 6JM]T and de = [0ey, O€, 25em]T. Appendix A.2 details the algorithm used to
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carry out the stress update.®

The implementation of a generic MC constitutive model (that is, one appropriate to 3-D loading,
rather than the more restrictive case of plane strain) is complicated by the hexagonal shape of the yield
surface in the deviatoric plane. While it is certainly not an insurmountable task to account for the edges
via the approach of Koiter [126] (see Hazell [127] for details on such an implementation), the restriction
to plane strain allows for a simpler approach. This approach is to implement the DP constitutive model
— which assumes a yield surface with circular shape in the deviatoric plane — and select material strength
parameters which provide the same yield stress as a given set of MC parameters. The DP yield criterion,

as applicable to 3-D loading, is given as:

fdp =\ J2 (Sij) — Qgpp — kdp <0 (442)

where oy, and kg, are the material strength parameters (which fulfil, respectively, analogous roles to ¢’
and ¢’) while Jy is the second invariant of the deviatoric stress tensor and p is the mean stress (J and p
are given, respectively, in tensor notation, as %sijsij and %O'kk, where the dimension of the tensors, o;;

and s;; is 3). For a constant dilation angle, the DP plastic potential is given as:

9dp = 1/ J2 (si5) — Bapp (4.4.3)
where (34, fulfils an analogous role to 1. Appendix A.1 details a derivation of the following relationships

between the MC parameters (¢, ¢, 1) and their respective DP parameters (op, kdp, B4p) to obtain a

plane strain parameter match:

\/§sinzp

=" 7 4.4.4

ﬁdp m ( )

gy = 3sin ¢/ (4.4.5)
Bapsing’ + /3 (3 - ﬁgp)

kdp _ c cos ¢, (3 — O‘dpﬁdp) ) (446)

3(3-03)

Table 4.2 lists some equivalent DP parameters (o, and (g, with ¢ = kg, = 0) for both associated flow
(1 = ¢') and combinations of ¢’ and 1) which satisfy Bolton’s relation (Eq.2.6.3) for ¢, = 30°.

Regarding the elasticity parameters, for a perfectly plastic constitutive model obeying an associated
flow rule, the collapse load is unique and, thus, independent of the choice of values for the elastic
parameters, E (or G) and v (c¢f. the discussion on solution uniqueness in §3.2). Accordingly, the choice
of values for E and v is typically motivated by numerical considerations; E is chosen to be sufficiently
large to prevent excessive mesh distortion while v is chosen to be less than 0.5 since — aside from the

problem that a (1 —2v) factor is present in the denominator of Eq.4.2.7 (such that v = 0.5 would

5A secondary advantage of carrying out the stress update via a UMAT was that the MC yield and plastic
potential functions could be used in their native form. Abaqus’ in-built implementation of the MC constitutive
model smooths the discontinuities of the yield and plastic potential functions; this is not necessary and introduces
error.
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T aw | Ba
30 30 0.4804 | 0.4804
35 35 0.5445 | 0.5445
40 40 0.6026 | 0.6026
30 0 0.5000 | 0.0000
38 10 0.5975 | 0.1728
46 20 0.6777 | 0.3355

TABLE 4.2: Equivalent MC and DP parameters for a plane strain parameter match (values for ag, and Ggp,
quoted to 4 d.p.).

bring about a singularity in this relationship) — locking phenomena tend to be more prevalent for the
incompressible case. For analyses assuming the non-associated flow rule, even if the existence of a limit
load is posited, it can not be assured that it is independent of the elastic parameters. Indeed, since
Eqs 4.3.2 and 4.3.3 depend on D;jj; (which, in turn, is dependent on E and v), the propensity for loss
of uniqueness and localization is also dependent on the elasticity parameters. A full investigation into
the influence of the elastic parameters on the limit load was deemed beyond the scope of the work and,
accordingly, ¥ = 1GPa and v = 0.3 were assumed for all analyses. Therefore, it is acknowledged that
the results presented in the subsequent sections are specific, not only to the chosen mesh, but also to

these values for the elastic parameters.

4.4.4 Finite element mesh

An unstructured mesh of six-node (quadratic) triangular elements was used for all analyses. The
mesh was generated using the third-party generator, mesh2D.m, to enable an Abaqus input file to be
written without the use of Abaqus/CAE.5 A typical mesh is shown in Fig.4.3; it consists of two zones,
labelled A and B. Zone A was intended to enclose the failure mechanism such that, if localization was
evident, the element width in this zone would dictate the band thickness. Typically, the radius of the
circular segment enclosing zone A was between 3D and 4D, although, if the pipe was deeply embedded
into a symmetric seabed (i.e. one with ¢; = t5), this was taken to be as high as 7D (particularly when
high values for ¢’ were assigned). Following each analysis, the failure mechanism, as depicted by contours
of plastic strain, was checked to ensure that it was confined to zone A.

The elements in zone B were much larger than those in zone A since this region was intended to remain
elastic throughout an analysis (such that high resolution of the solution in Zone B was unnecessary). As
in the OxLim analyses, at the intersection between the pipe perimeter and the free surface, a singularity
in the stress field was expected and, accordingly, a very fine mesh was used at these points (typically,
an element width of 0.001D). The ratio of the absolute difference between the width of an element
relative to each of its neighbouring elements was restricted from exceeding a certain tolerance (typically

5%) such that this fine mesh extended around the pipe perimeter. The influence of mesh refinement

6mesh2D.m was written by Mr D. Engwirda of the University of Sydney and is currently freely available from
the MathWorks file exchange website: http://www.mathworks.com/matlabcentral/fileexchange.
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See Inset A

Inset A

Zone A

Zone B

F1G. 4.3: Typical mesh used in Abaqus analyses (case shown is for 1 = 0.4, {o = 0 and contains 4794 elements).

throughout zone A is discussed in §4.5.2 but, in general, the width of the elements in this region were,
at most, 0.05D. Depending on the choice of values for t1, t2 and ¢’, between 3,000 and 6,000 elements

were present in each mesh.

4.4.5 Test strategies

The results section, §4.5, refers to two types of test: swipe and probe. Due to the use of perfect
plasticity in the continuum constitutive relationship (hardening modulus, h = 0), the distinction between
a swipe and a probe test was not envisaged to be critical (indeed, a swipe could be considered a special
case of a probe). However, for consistency with their usage in the discussion on the experimental results
in Chapter 5, they will be considered separately. The following discussion sets out the responses expected
for these two tests by positing that the FE data will be consistent with the predictions of a de-coupled,
elastic-perfectly plastic force-resultant model (and, hence, will be consistent with the assumptions of the
proposed force-resultant model — which is of the perfectly plastic class if £; and o are held constant, as

they are for these small-strain analyses).

Swipe test

A swipe test is carried out by moving the pipe horizontally while maintaining constant vertical
penetration. In accordance with the elastic-plastic decomposition law (Eq.2.5.1), enforcing constant
vertical displacement (i.e. constraining dw to be zero), means that changes in the elastic and plastic
components of w must be of equal magnitude and opposite sign, i.e. dw. = —dw,. If the vertical load,
V, changes during the swipe, then the elastic component of vertical displacement must be non-zero (in
accordance with the elastic relations — Eq.2.6.7). Hence, the plastic vertical displacement component is
also known to be non-zero. If elastic and plastic displacements accumulate simultaneously, then the load
path must track along the yield surface (it cannot pass inside the yield surface otherwise only elastic

displacements would accumulate, and it cannot cause the yield surface to expand/contract since perfect
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F1G. 4.4: Schematic plots in w:w and V:H spaces, showing the results expected for the tests discussed in §4.4.5.

plasticity is prescribed). Accordingly, a series of swipe tests provides the data necessary to deduce the
current instance of the V:H yield surface.

Due to the assignment of zero cohesion (¢’ = 0), no tensile stresses were permissible and, hence,
the V:H yield surface was expected to pass through the origin (a trend also evident from the OxLim
results). Accordingly, a swipe following no prior loading was expected to generate a V:H load path
which emanates from the origin and tracks along the current instance of the yield surface, as shown
schematically in Fig.4.4a (path 0—A). As indicated on the figure, A is the yield point which has its flow
vector inclined in the direction parallel to the H axis (such that, on reaching this yield point, purely
horizontal plastic displacement is allowable). For analyses assuming an associated flow rule, this yield
point is located at the peak H (due to the properties of yield surface convexity and normality, as discussed
in Chapter 3). On the other hand, for analyses assuming a non-associated flow rule, this yield point is
not necessarily located at the peak H; this more general case is shown in the schematic. Fig.4.4b is a
schematic of a swipe test following vertical penetration to yield. As shown in the figure (path B—C),

the V:H load path for this swipe test was expected to emanate from the maximum vertical load, track

along the current instance of the yield surface, and terminate on the same (V, H) point as the first swipe
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test. Accordingly, for analyses with ¢; = ¢5 (such that the yield surface is symmetric about the V axis),
the two swipes described above are sufficient to determine the current instance of the yield surface. For
the more general case of ¢t > to, four such swipe test are necessary since the load path resulting from a
rightward swipe (whether following vertical loading to yield or not) will not be the same as that resulting

from a leftward swipe.

Probe test

A probe test is carried out by moving the pipe along a straight-line path (in w:w space), as shown
schematically in Fig.4.4c (path 0—D—E).” In general, the corresponding V:H load path was expected
to consist of two successive stages. In the first, 0—D, the (V, H) load point was expected to pass across
the elastic domain while in the second, D—E, the load point was expected to track along the current
instance of the yield surface. Point E is the point on the yield surface where the flow vector is inclined
at the angle, «, to the H axis.

The above response was envisaged due to the assumption that the pre-yield response is de-coupled
from the post-yield response. Under this assumption, the (V, H) yield load which is first encountered
during the probe test (point D) is not, in general, the one which has its flow vector inclined at the angle,
a, to the H axis. Yet, this is the load point which must be reached for purely plastic displacement
increments to occur at a constant (V, H) load state. Hence, the load point must transition from point
D to E and, since there is no reversal in the loading direction and no hardening is permitted, D—E is
expected to track along the yield surface.

A probe test therefore identifies the (V, H) yield point corresponding to a flow vector of prescribed
inclination (i.e. prescribed a value). Accordingly, while swipe tests provide an efficient means to deduce
the current instance of the yield surface, probe tests are valuable in determining the distribution of flow
vectors over it. Given the necessity to obtain data to calibrate the flow rule of the proposed force-resultant

model, probe tests were used extensively (as will be discussed in §4.5.4).

4.4.6 Job submission and results extraction

Initially, the Abaqus analyses were formulated in Abaqus/CAE and submitted locally (i.e. on a
desktop PC). However, once confidence was garnered in the success of the Abaqus implementation,
the remaining analyses were submitted from the command line. This allowed a batch of jobs to be
submitted efficiently and enabled the runs to be carried out on the Oxford University supercomputer
(where Abaqus/CAE was not available). A MATLAB script was written to generate a batch of Abaqus
input (.inp) files from a table of data specifying: (i) the boundary geometry (including #; and ¢3), (ii) the

constitutive parameters (op, Bap), and (iii) the magnitude and direction of the linear displacement path.

"Elsewhere (cf. Martin [34], Zhang [37]), probe tests refer to the load-controlled movement of a footing/pipe
element and the subsequent inspection of the measured displacement path. Here, although a displacement path
is prescribed and the load path is measured, the concept is similar.
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A Python script was written to schedule the submission of those jobs carried out locally while a Bash script
was written to carry out the equivalent task on the supercomputer; Appendix B contains commented
versions of both these scripts. Minimal computational advantage was found by multi-threading a single
job over several cores on the supercomputer clusters, HAL/SAL, and therefore the Bash submission
script was written to submit several serial jobs concurrently. A second Python script was written to
extract selected results from the Abaqus output database (.odb) binary file to a text file. A further
set of MATLAB scripts were written to read the results from this text file and carry out the required

post-processing.

4.4.7 Input file: mesh assignment, boundary conditions and time incrementation

Each Abaqus job was submitted using two input (.inp) files; the first to apply gravity loading and
the second to apply displacement-controlled movement to the pipe. Through the use of the Abaqus card,
*RESTART, this approach allowed several displacement-controlled analyses to be carried out for every
gravity loading analysis (so that several load:displacement paths could be deduced for the same boundary
geometry and assigned material strength parameters). Appendix A.5 contains abridged, commented
versions of both input files, and their salient features are discussed in the following.

The nodal coordinates and their connectivity (as returned from mesh2D.m) were specified in the
gravity loading input file under the Abaqus cards, *NODE and *ELEMENT, respectively. With reference
to Fig. 4.1, nodes located on DE and FA were declared as a common node set, using the card *NSET.
Boundary conditions to enforce zero horizontal displacement were specified on this node set (using the
card, *BOUNDARY). The same procedure was used to prescribe boundary conditions on the fixed,
horizontal boundary, EF. Elements located on the pipe/soil interface, BC, were also grouped into the
common element, ETOP, (for reasoning discussed subsequently) using the card, *ELSET.

The pipe was defined as a rigid body (using the ANALYTICALSURFACE option on the *RIGID
BODY card) to allow resultant boundary conditions to be transferred (via an internal contact algorithm)
to the nodes located on the seabed boundary. The geometry of the circular pipe was approximated by
a polygon (using the TYPE=SEGMENTS option on the *SURFACE card) such that the pipe could be
initially positioned to align perfectly with the straight-edged perimeter of the seabed. The number of
line segments into which the circular pipe/soil interface was divided was the same as that used in the
OxLim analyses (hence, it was assumed that the sensitivity of the limit load to the discretisation of
the soil domain boundary was the same for ¢ < ¢’ as for ) = ¢'). All analyses assumed a fully rough
pipe/soil interface. Accordingly, the TIED option on card, *CONTACT PAIR, was used to enforce any
point on the soil boundary initially in contact with a point on the pipe perimeter to remain in contact
throughout an analysis (the rigid body was one member of the contact pair while the other was specified

as the outward-facing edges of the elements belonging to the set, ETOP).
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Since the gravity loading and displacement-controlled movement steps were assumed as quasi-static,
the card, *STATIC, was declared beneath each *STEP card. Gravity loading was applied using the
*DLOAD card (to apply a set of statically equivalent nodal loads to the assigned value of the body
load per unit area). The movement of the pipe was carried out via the specification of the u and w
displacement components of the control node of the rigid body (using the *BOUNDARY card). The
gravity loading step was found to take less time to reach completion if the vertical boundaries (DE
and FA) were placed on roller, rather than encastré, supports. This was the motivation for the slight
alteration in the boundary conditions for the Abaqus analyses compared with those carried out using
OxLim (NB: the choice of roller or encastré was found to have no other influence on the load:displacement
response, providing the support was sufficiently remote from the pipe).

The use of the inefficient (though, robust) initial stiffness method meant that each analysis required
10,000-30,000 pseudo time-steps and lasted 6-24 hours. Accordingly, it was in the interests of both
computational efficiency and memory resource management to limit the amount of data written to file.
For the batch set of analyses reported in §4.5.4, the resultant loads and displacements for the control node
of the rigid body were output every 60 time-steps (using the HISTORY and FREQUENCY options under
the cards, *OUTPUT and *NODE OUTPUT). Also, for the final time-step in an analysis, an output of
the element strains (both total and plastic) was requested (using the FIELD option under the *OUTPUT
and *ELEMENT OUTPUT cards). For pragmatic reasons, the convergence tolerance on the residual
load (the ratio of the maximum ‘out-of-balance’ nodal load to the mean nodal load) was also increased
from its default value to 0.005 to enable the runs to reach completion within 10,000-30,000 pseudo time-
steps (a reserve tolerance of 0.05 was also added to prevent an analysis from aborting prematurely).
The number of equilibrium iterations before a time-step was abandoned (and, subsequently, sub-divided
and, then, repeated) was also increased. These changes were specified using the FIELD and TIME
INCREMENTATION options on the *CONTROLS card.

4.5 Results

4.5.1 Associated flow (¢ = ¢'): swipe and probe tests

Motivation

Several analyses assuming an associated flow rule were carried out to validate the Abaqus imple-
mentation against the lower and upper bounds on the exact solutions determined using OxLim. Plots
showing the data obtained from the Abaqus analyses for ¢ = § = ¢’ = 30°, t; = t5 = 0.4 are shown
in Fig.4.5. Fig.4.5a contains plots showing the results of two swipe tests while Fig.4.5b contains plots

showing the results of three probe tests.
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Fi1G. 4.5: Abaqus swipe and probe test results for t; = o = 0.4, v = § = ¢’ = 30°.
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Swipe test results with ¢; = 1o

The prescribed displacement paths for both swipe tests are shown in the lower right quadrant of
Fig.4.5a. Test SW1 consisted of vertical penetration (0—A—B), then horizontal displacement (B—C),
while Test SW2 consisted of horizontal displacement (0—D) without prior vertical penetration. In the
lower left quadrant of Fig. 4.5a, the vertical load:displacement paths for both swipe tests are shown. Over
0—A, there was a stiff response (large change in V for a small change in w/D), while post-yield (A—B),
w/D increased while V' (= 11.43) remained constant. The attainment of constant V is reassuring since
the yield load is known to be unique for a material obeying a perfectly plastic continuum constitutive
model and an associated flow rule (cf. §3.2). Over B—C (the portion of the test consisting of the swipe
itself), V reduced to 4.72 and H increased to 1.63. An inspection of the plot in u/D:H space (in the
upper right quadrant) reveals that, towards the end of the swipe, H remained constant with increasing
u. This implies that the (V,I;T) load point at C is a yield point and that the flow vector at C is
parallel to the H axis. Accordingly, the results of Test SW1 suggest that the parallel point is located at
(V, I:I) = (4.72,1.63). For Test SW2, the plot in »/D: H space shows that a constant post-yield horizontal
load was also attained, and that the value of H at point D is the same as that at point C. V increased
over 0—D, reaching a final value of 4.44 such that, as expected, C and D plot on (approximately) the
same point in V:H space — namely, the parallel point. Due to the arguments set out in §4.4.5, the
V:H load paths, B—C and 0—D, are expected to overlie the current instance of the yield surface; this

postulate is shown to be true subsequently, via a comparison with the OxLim-derived data.

Probe test results with ¢; = ¢

For the three probe tests, DCP1, DCP2 and DCP3, the prescribed displacement paths are shown in
the lower right quadrant of Fig.4.5b. 0—E was common to each probe test, and consisted of vertical
penetration to 1.1x107%D (this distance was deduced from the results of Test SW1 and was intended to
position point E mid-way along the V extent of the current instance of the yield surface). The second
portion of each test was the probe itself, for which the specified « values for Tests DCP1, DCP2 and DCP3
were, respectively, 0°, 34° and —53°. As shown in the upper left quadrant of Fig.4.5b, the load paths
in V:H space, for each probe, are seen to consist of two stages: the first is approximately linear, while
the second is curved. Indeed, this is similar to the response that was shown schematically in Fig.4.4c
and, thus, broadly confirms the claim that the data generated from the FE analyses is consistent with
that of an elastic-perfectly plastic force-resultant model. However, it is noteworthy that the transition
from an elastic to an elastic-plastic response occurred more gradually than that shown schematically in
Fig.4.4c. This suggests that the spread of plasticity throughout the continuum occurred gradually, such
that — although each element of the continuum undergoes a sudden transition from elastic to elastic-

plastic behaviour — some elastic/plastic coupling is evident in the force-resultant data (specifically, the
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F1G. 4.6: Plot in V:H (dwj,:duy) space, for t; =t = 0.4 and ¢’ = § = ¢ = 30°, showing: (i) the mean of the
OxLim LB and UB (V, H) yield points, and (ii) the Abaqus load paths from Tests SW1, SW2 and
DCP1-DCP3.

stiffness depends on the proximity of the loads to the yield surface). Towards the end of each probe, the
plots in both V:w/D and u/p:H spaces show the attainment of constant V and H with increasing w and
u. Accordingly, each load path was expected to terminate on the yield point which has its flow vector
inclined to the H axis at the prescribed value for .. For Test DCP1, the (V, H ) coordinates of point F
are (4.60,1.63). This is, reassuringly, in close proximity to points C and D in Fig.4.5a (the locations of
the parallel point, as inferred from the results of Tests SW1 and SW2, respectively). For Test DCP2, the
load path, E—H, terminates at (V, I:I) = (11.33,0.09). This is close to the maximum sustainable V' of
11.43 (as inferred from Test SW1), which is unsurprising given the fan of flow vectors which was found
to be located at the apex of the yield surface in Chapter 3 (see Fig.3.12). The load path for Test DCP3
(E—F) terminates close to the origin in V:H space which, again, is unsurprising due to the presence of

a second apex located there.

Comparisons with OxLim results

To enable a clearer comparison to be drawn between the load paths of the five tests shown in Fig. 4.5,
the data has been re-plotted in Fig.4.6 on a common set of V:H axes. The mean of the lower and
upper bound yield load estimates obtained from OxLim, for the same values of t1, 2, ¢, ¥ and §, are
also plotted. The load paths obtained from the Abaqus swipe and probe tests are seen not only to be
self-consistent (in the sense that they terminate on a common curve) but, also, they plot within close
proximity to the OxLim bounds.® Flow vectors inferred from the Abaqus probe and swipe tests are also
included on this plot and, as expected, these flow vectors appear to plot normal to the instance of the

yield surface implied by the Abaqus load paths (and the locus of the mean OxLim (V, H ) yield points).

8The same mesh was used for Tests SW1-SW2 and DCP1-DCP3. Therefore, the error due to the finite spatial
resolution imposed by the mesh was common to all tests.
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(b) Tests DCP4, DCP5, DCP6 and DCPT: probe tests.

F1G. 4.7: Abaqus swipe and probe test results with ¢; = 0.4, 12 = 0, ¥ = § = ¢/ = 30°.
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Swipe tests with #; > o

While the plots in Figs 4.5 and 4.6 provide validation of the Abaqus implementation, it was deemed
worthwhile to carry out further validation tests for an asymmetric seabed surface (i.e. one with t; # t3).
The results of several analyses carried out with » = § = ¢/ = 30°, t; = 0.4 and {5 = 0, are shown in
Fig.4.7. The prescribed swipe test displacement paths are, again, shown in the lower right quadrant of
Fig.4.7a but, due to the asymmetry in the seabed surface, four, rather than two, swipes were carried out;
SW3: a rightwards swipe (B—C) following penetration to 3.0x107%D (0—A); SW4: a leftwards swipe
(B—D) following penetration to 3.0x107%*D (0—A); SW5: a rightwards swipe (0—E) following no prior
penetration and SW6: a leftwards swipe (0—F), also following no prior penetration (O—F). Concerning
0—A (the common vertical penetration portions of Tests SW3 and SW4), the plot in V:w/D space shows
that the chosen penetration distance was sufficient for V to reach a steady value, while the plot in H:4/D
space shows that H increased even though no horizontal displacement was prescribed. Therefore, the FE-
derived data suggests that some cross-coupling is evident in the force-resultant relationship (specifically,

9 The swipes, B—C and 0—E, terminate at approximately the

kry in Eq.2.6.7 is greater than zero).
same yield point in V:H space — the yield point with a flow vector parallel to the H axis and pointing
in the direction of increasing H. Likewise, the swipes, B—D and 0—F, also terminate at approximately
the same point in V:H space — the yield point with a flow vector parallel to the H axis and pointing in
the direction of decreasing H. The load paths for each of the four swipes form a closed surface which,
for the reasons set out in §4.4.5, is expected to be within close proximity to the current instance of the
yield surface. Under the assumption that the V:H load path for B—C is indeed a portion of the yield
surface, it is interesting that part of the load path for vertical penetration, 0—A, tracks along that for

B—C. This suggests that purely vertical penetration requires positive H (i.e. if the pipe were to undergo

penetration without any horizontal restraint, it would be pushed leftward).

Probe tests with £; >t

Fig.4.7b shows the results of four probe tests: DCP4, DCP5, DCP6 and DCP7. Like the probe tests
on the symmetric seabed (DCP1-DCP3), vertical penetration (0—G) was carried out before the start of
the probe itself, so as to give a starting (V,I:I ) load point bounded within the current instance of the
yield surface. As shown in the upper left quadrant of Fig.4.7b, the load paths for the probes are seen
to follow the same pattern as those carried out on the symmetric seabed. Namely, there is an initial,
linear portion (over which the soil remained elastic), followed by a curved portion (as plasticity began
to spread throughout the continuum). The plots in V:w/pD and v/D:H spaces show that the magnitude

of the displacement applied in each probe was sufficiently high to allow w and u to accumulate while

Of kg # 0 for t1 # t5 (and, yet, due to symmetry, kg, = 0 for #; = #5), there is the implication that the
elasticity parameters should be taken as functions of #; and 3. However, as will be discussed in Chapter 6, this
level of sophistication in the calibration of the proposed force-resultant model was deemed to be beyond the scope
of the current work.
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V and H remained constant (i.e. the extent of each probe was large enough to generate a load path
which terminates at the point on the yield surface where the flow vector is inclined to the H axis at
the prescribed value for «). For Test DCP4, o was specified as 0°. Accordingly, it is unsurprising
that the load path for this test, and the load paths for Tests SW3 and SW5, appear to terminate at
approximately the same point in V:H space. The prescribed o values for Tests DCP5, DCP6 and DCP7
were, respectively, —63°, —45° and 131°. For DCP5 (G—I) and DCP6 (G—J), the load paths are seen to
terminate on the upper portion of the yield surface, with point I located closer to the origin than point J.
This response was expected since, in light of the OxLim results, a fan zone of flow vectors grouped around
pure vertical uplift were expected at the origin. For Test DCP7, the load path, G—H, consists of a small
elastic part (owing to the close proximity of G to the lower portion of the yield surface), followed by an
elastic-plastic portion which terminates close to the apex of the yield surface in the positive V, positive
H quadrant of the V:H plane. Fig.4.8 is a plot of the load paths for Tests SW3-SW6 and DCP4-DCP7
on a common set of V:H axes, together with the locus of (V, H ) yield point obtained from OxLim for

the same t1, to2, ¢, 1 and §. Good agreement is again observed between the Abaqus and OxLim data.

Other tests

Table 4.3 lists some further yield load estimates obtained from OxLim and Abaqus for a range of
values for t1, to and ¢ = ¢/ = §. Each OxLim yield load was deduced from an analysis carried out
under velocity control, with @ = 90°, whereas each Abaqus yield load was obtained from a probe test,
again, with o« = 90°. The table lists the LB OxLim, UB OxLim, mean OxLim and Abaqus values of
the magnitude of the dimensionless resultant yield load, [8/y'D2| = VV2 4 H2. The OxLim error is
given by Eq.3.5.3, whereas the Abaqus error is defined as the absolute difference between the Abaqus
result and the mean OxLim value, normalized by the mean OxLim value. The largest Abaqus error was

7.75%, for t; = 0.4, t5 = 0, ¢’ = ¢ = 6 = 20°, while the errors for the other cases were all less than
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_ _ |8/~ D?|, 19221, 1922, 1927, OxLim Abaqus
h b2 o=y Abaqus LB UB average error (%) | error (%)
OxLim OxLim OxLim
0.1 0.1 20 0.707 0.680 0.692 0.686 0.890 3.033
0.1 0.1 30 2.962 2.910 2.983 2.947 1.235 0.528
0.2 0.2 20 1.469 1.427 1.447 1.437 0.711 2.241
0.2 0.2 30 5.778 5.677 5.844 5.761 1.455 0.303
0.4 0.4 20 3.083 2.956 3.031 2.994 1.251 2.983
0.4 0.4 30 11.429 10.931 11.193 11.062 1.187 3.317
0.4 0.0 20 0.756 0.694 0.709 0.701 1.050 7.746
0.4 0.0 30 2.943 2.809 2.885 2.847 1.327 3.398

TABLE 4.3: Selected Abaqus results (assuming associated flow and a fully rough interface, ¢'=¢), together with
the equivalent OxLim results (all values for |3/y'p?|, and each error).

4%. In all likelihood, the primary reason for these errors was insufficient mesh refinement in the Abaqus
analyses. Nevertheless, these error magnitudes are sufficiently small that, when viewed together with the
comparison plots (Figs 4.6 and 4.8), they provide a convincing validation of the Abaqus implementation

for the special case of associated flow.

4.5.2 Non-associated flow (¢ < ¢'): mesh sensitivity analyses

Motivation

As discussed in §4.4.1, since no method was used to regularize the continuum, mesh dependence
was anticipated for all analyses assuming a non-associated flow rule. To gauge the sensitivity of the
load:displacement response to mesh refinement, four trial analyses, each using a different mesh, were
carried out with 6 = ¢’ = 30°, » = 0° and ¢; = ¢ = 0.2. The meshes differed by the choice of element
width for Zone A (as labelled in Fig. 4.3), with the target element widths prescribed as: 0.065D, 0.04D,
0.02D and 0.01D. For the latter case, this meant that the mesh contained more than 30,000 elements.
In each analysis, the pipe was subjected to vertical penetration (i.e. a probe test with v = 90°) until the
gradient of the vertical load:displacement path deviated by a sufficient amount to suggest that a plastic

response had been attained.

Vertical load:displacement response

Fig.4.9a shows the vertical load:displacement paths for the four trial analyses, as well as a plot of the
results of an analysis assuming associated flow (for ¢ = § = ¢/ = 30° and #; = {2 = 0.2). One immediate
difference between the results for the associated and non-associated analyses is that, for the former,
the load:displacement response is smooth whereas, for the latter, it contains fluctuations. Despite the
presence of fluctuations, the load:displacement curves for all five cases are broadly similar to each other.
In particular, the fluctuations for each non-associated analysis appear to be about a constant value for
V. This suggests that it is appropriate to characterize the load:displacement response in terms of elastic

behaviour prior to yield, and a constant limit load post-yield (theoretical reasoning, in isolation, was



Chapter 4: Displacement finite element analyses

136

: : : : : ‘ ‘ 100
l OxLim solution bounded in this range
6L ] e
: g 90t
51 T __—0.065D) =
[<5)
. 0.04D | 2 gl
=]
> ';
3t 0.02D | g )
9l 0.01D | E
& 60 +
1 associated flow S
0 : A —— 50 : : :
0 1 2 3 4 5 6 7 0 0.02 0.04 0.06 0.08

w/D

(a) V:w/D paths for various meshes.

x1074

average element width in Zone A

(b) % reduction in the yield load with average

element width in Zone A.

0.5 0.5
— o 7 - i . - —0.
0-5 - ‘%&lz‘(‘:’é%’;;‘fgﬂq 0-5 “
1 L8 % '-':E _1
v 0€°~'0‘
~15 a —-1.5
-2 -1 0 1 2 -2 -1 0 1 2
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(d) U = 0.99 contour (left) and the contours of shear strain (right) for a Zone A element width of 0.04D.
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(e) U = 0.99 contour (left) and contours of shear strain (right) for a Zone A element width of 0.02D.
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(f) U = 0.99 contour (left) and contours of shear strain (right) for a Zone A element width of 0.01D.

F1G. 4.9: Influence of mesh refinement on the yield load and the failure mechanisms for t; =1, = 0.2, 6 = ¢’ =
30°, ¢ = 0°.
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not sufficient to arrive at this conclusion). However, the figure shows that mesh refinement leads to a
reduction in the value of the yield load — a finding which is consistent with the investigation reported by
Loukidis & Salgado [123]. Accordingly, it can be concluded that the yield loads deduced from the non-
associated analyses are specific to the prescribed spatial discretisation (i.e. the mesh). Fig.4.9b shows
the percentage reduction in the yield load (relative to the associated value) plotted against the average
element width in Zone A. For the smallest element width (0.01D), the yield load is approximately 69%

of the reference associated flow value, V = 5.78.

Failure mechanisms

For the final time-step of each non-associated analysis, the plots in Figs 4.9¢—4.9f show: (i) the 0.99
contour of utilization, and (ii) the spatial distribution of shear strain. For the analysis using the coarsest
mesh, the U = 0.99 contour plot in Fig.4.9c reveals many small, distinct yielded zones distributed
throughout the soil mass. This is in stark contrast to the large, homogeneous yielded zones evident from
the associated analyses (e.g. Fig. 3.7, page 84). Although a clear failure mechanism is not discernible
from either the U = 0.99 contour plot or the shear strain contour plot in Fig.4.9¢c, it is noteworthy that
a non-yielded zone of approximately triangular shape is located immediately beneath the pipe invert.
This is similar to the false head which was evident in the associated analyses assuming a rough pipe/soil
interface, as discussed in Chapter 3. Fig.4.9d contains the contour plots for the analyses carried out
using the mesh with an average element width of 0.04D. A comparison between the U = 0.99 contour
plots in Figs 4.9c and 4.9d reveals that the pockets of yielded material for the finer mesh are smaller
than those for the coarsest mesh. Indeed, the plot of the shear strain contours in Fig.4.9d suggests that
deformation is concentrated in thin bands (i.e. a localized failure mechanism is evident). An examination
of Figs 4.9e and 4.9f reveals that the localized failure mechanism becomes even more pronounced for the
finer meshes; in particular, for the finest mesh, a criss-cross pattern of thin localized zones is readily
apparent. Accordingly, smearing the discontinuity over a wider extent is seen to increase the resultant
yield load. The identification of localized failure modes for each of the non-associated analyses is also
consistent with the notion that the formation and disappearance of shear bands is responsible for the

fluctuations in the vertical load:displacement response.

Mesh selection

On completing these trial analyses, it was necessary to select a mesh for the remainder of the analyses
undertaken to calibrate the force-resultant model. Although 0.01D is, at least, an order of magnitude
greater than the thickness of an actual shear band (for realistic values for D), the analyses lasted approxi-
mately three days. In carrying out a parametric study to determine the instance of the V:H yield surface
(and distribution of flow vectors) for a range of soil geometries and strengths, three days of computing

time for a single analysis was deemed excessive. Accordingly, for pragmatic reasons, a mesh with an
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element width in Zone A of approximately 0.05D was used in all of the analyses reported subsequently.
The implication of this, with regard to the calibration of the force-resultant model, is that each yield
surface deduced from the data generated for the non-associated analyses is expected to be larger than
that which would have been obtained if an appropriate length-scale (element width) had been used.
Nevertheless, by accounting for non-association in this manner, better approximations to the V:H yield
surface were expected to be obtained than if data generated from analyses assuming associated flow had
been used in isolation. Furthermore, the non-associated analyses were expected to provide vital insight
into the distribution of flow vectors over the yield surface, from which the force-resultant model’s flow

rule was to be calibrated.

4.5.3 Non-associated flow (¢ < ¢'): swipe and probe tests

Motivation

With an associated flow rule, and for a given combination of values for #;, ts, ¢/ and §, the V:H
load paths obtained from the swipe and probe tests were found to terminate on a common curve. Via a
comparison with the OxLim data, this curve was confirmed as the instance of the yield surface for the
chosen combination of t1, 3, ¢’ and §. At the outset of the work, this response was expected since the
assignment of the associated flow rule for a perfectly plastic continuum constitutive model was known
to give unique solutions for the stresses and, hence, a unique V:H yield surface. For the assignment
of the non-associated flow rule, such assurances could not be deduced from theoretical reasoning alone.
Accordingly, for a given mesh, it was of interest to assess whether a similarly consistent depiction of
the response at yield could also be obtained using a non-associated flow rule. If so, conclusions could
then be drawn as to the influence of reducing v (below ¢') on the size and shape of the yield surface, as
well as the distribution of flow vectors (under the proviso that the results are appropriate to the given

length-scale imposed by the mesh being employed).

Swipe test results

Fig.4.10a shows the results of two swipes tests carried out for t; = to = 0.4, ¢’ = 30°, ¢ = 0°. As
shown in the lower left quadrant of the figure, the first swipe, B—C (Test SW7), commenced following
no prior vertical loading whereas the second swipe, 0—D (Test SW8), commenced following vertical
penetration to yield (O—A—B). Like the results presented in §4.5.2, the load:displacement paths in
both V:w/p and u/pD:H spaces contain the fluctuations that are symptomatic of localization. However,
relative to the absolute values of the loads, the fluctuation amplitudes are sufficiently low that they do
not mask the trends in the data. Indeed, the responses of Tests SW7 and SW8 are, in several respects,
similar to those of Tests SW1 and SW2. In particular, towards the ends of Tests SW7 and SW8, the

load fluctuations appear to be about consistent values of V and H (0.75 and 0.72 respectively to 2 d.p.);



Chapter 4: Displacement finite element analyses

139

Test SW7 Test SW8
1.5 ¢ 1.5+
1 C, 1+
= o5l T g5
0 AB O
—-0.5 : : : : —05 ‘ ‘ ‘ ‘
0 2.5 5 75 10 -2.5 0 2.5 5 7.5 10
4 u/D (x107%)
0t 0l 0 D
T10} T 10}
= S
R X 20+
S 30+ S 30 +
S s B C
40 + 40 +
0 2.5 § 7.5 10 —2.5 0 2.5 5 7.5 10
1% u/D (x107%)
(a) Tests SW7 and SW8: swipe tests.
‘ Test DCPS Test DOP9 — — — Test DCP10
1.5 ¢t 1.5}
1+t 116
=05 = 05
0t 0l
—0.5 ‘ ‘ ‘ -0.5
0 2.5 § 7.5 10 —_5 35
\%4
0f 0r
*T\ 10 | T Tt
o = =]
v z W
~— 20 z Z 90!
2 =
S 30} = S 30!
G
40 ‘ ‘ ‘ o
0 2.5 ? 7.5 10 -5 0 5 10 15 20 25 30 35
1% u/D (x107%)
(b) Tests DCP8, DCPY and DCP10: probe tests.
F1G. 4.10: Abaqus swipe and probe test results for t; = t5 = 0.4, ¢’ = § = 30°, ¢ = 0°.




Chapter 4: Displacement finite element analyses 140

o mean of OxLim bounds

Abaqus load path

0o0?©

©0o0o00 000
_2 | \ | | | | | | | | | | | | L
-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

V, dwp/D
FiG. 4.11: Plot in V:H (dwp:duy) space, for ¢’ = § = 30°, {; = {o = 0.4, showing: (i) the mean of the OxLim
LB and UB (V, H) yield points for ¢» = 30°, and (ii) the Abaqus load paths from Tests SW7, SW8
and DCP8-DCP10 for ¢ = 0°.

this observation is in keeping with the expectation of reaching a parallel point. Furthermore, if it is
assumed that the V:H load paths for B—C and 0—D overlie the current instance of the yield surface,
then its shape is broadly similar to that deduced from the swipe tests assuming the associated flow rule
(as implied by the load paths, B—C and 0—D, in Fig.4.5).

There is, however, one key difference between the results of the associated and non-associated swipe
tests. This difference concerns the location of the parallel point in the V:H plane (if indeed the points
labelled C and D in the upper left quadrant of Fig.4.10a are assumed to be the location of the parallel
point). For the associated swipe tests, the parallel point was found to be located at the peak H on
the yield surface (a finding which is consistent with the fact that an associated flow rule for a perfectly
plastic continuum constitutive model must lead to a force-resultant yield surface which is convex, and
a force-resultant flow rule which obeys normality). By contrast, for the non-associated swipe tests, the
V coordinate at the parallel point was found to be less than the V coordinate of the point on the yield
surface where H attains a maximum. Accordingly, for the assignment of a non-associated flow rule,
the transition from downward to upward movement at the initiation of lateral displacement occurs at a
lower value of V/¥, (where Vj (= Vo/y/D2) is the V dimension of the yield surface) than for the assignment
of an associated flow rule.'® As discussed throughout Chapter 2, it is important that a force-resultant
model can predict, to a high level of accuracy, the tendency for the pipe to initially penetrate or rise
upwards. Clearly then, a non-associated flow rule is required for the proposed model. These deductions
are consistent with the findings of experimental investigations of the combined (vertical, horizontal and
moment) loading of a surface foundation on sand, e.g. Gottardi et al. [35], Byrne [58], Bienen et al. [128].

The differing positions of the parallel points for the associated and non-associated analyses are re-
flected in the presence of a peak in the u/pD:H plot of Test SWS8, as shown in upper right quadrant of
Fig.4.10a. This peak arises because the load point tracks along the yield surface — surpassing the maxi-

mum H in doing so — to reach the parallel point. Only if a non-associated force-resultant flow rule is

107/ is used here, rather than Vi and V5 (two of the four hardening parameters of the proposed force-resultant
model), to emphasize that the current discussion is restricted to the initiation of plastic displacement about the
as-laid position (i.e. for t; = t3).
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Fic. 4.12: Tests DCP11, DCP12 and DCP13: probe test results for £; = 0.4, {5 =0, ¢’ = § = 30°, ¢ = 0°.

used can the proposed model replicate this load:displacement response. It is noteworthy that, for certain
loading histories, a peak in u/D:H space is likely to be encountered for an on-bottom pipe on either
undrained clay or drained sand. However, for each soil type, it is important to bear in mind that the
reasons for the peaks are quite different. For undrained clay, the peak in u/p:H space is due to suction
build-up and its subsequent release (i.e. a response due to hardening and, subsequently, softening). On
the other hand, as outlined above, the peak in u/p:H space for drained sand arises because the value of

H at the parallel point is less than the maximum H on the yield surface for t; = ts.

Probe test results

Three probe tests, DCP8, DCP9 and DCP10, were carried out for t; = to5 = 0.4, ¢/ = 30° and
1 = 0°. Unlike the probe tests reported thus far (DCP1-DCP7), none of these three probes were carried
out following vertical penetration. Rather, as shown in plot in the lower right quadrant of Fig.4.10a,
displacement commenced without prior vertical penetration. The prescribed « values for Tests DCPS,
DCP9 and DCP10 were, respectively, 20°, 40° and 60°. As for the two swipe tests (SW7 and SW8),
an inspection of the load:displacement responses in both V:w/p and u/D:H spaces reveals that, despite
the load fluctuations, the magnitude of each probe was sufficiently high such that, on average, V and
H tended towards constant values. Accordingly, the final load point of each probe test can be readily
identified as a (V, H) yield point, and the flow vector at each yield point is known to be inclined to the
H axis at the prescribed value for a. For Test DCP10 (the 60° probe), the load path in V:H space

is seen to terminate on the V axis. Accordingly, the results of this test suggest that the yield surface
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admits a multitude of flow vectors at the maximum V (such that plastic displacement with a horizontal
component can occur even if H = 0). For an associated flow rule, this conclusion was drawn in §3.6.5
based upon the OxLim-generated data (and, indeed, it is also evident from the Abaqus results assuming
an associated flow rule — ¢f. the proximity of points B and G in Fig.4.6). Now it is apparent that, for a
non-associated flow rule, the yield surface should also possess an apex at the maximum V. For the other
two probes (Tests DCP8 and DCP9), the load paths terminate at a point in V:H space remote from the
apex. Unsurprisingly, the load path for DCP8 (0—E, the 20° probe) terminates closer to the parallel
point than the load path for Test DCP9 (0—F, the 40° probe).

Comparison between swipe and probe test results

Fig.4.11 is a plot of the load paths for Tests SW7-SW8 and DCP8-DCP10 on a common set of V:H
axes. Also included on the plot is the locus of the mean of the LB and UB yield points obtained from
OxLim for t; =t = 0.4, § = ¢ = ¢/ = 30°. This plot reveals that the load paths for the probe tests
terminate within close proximity to the load paths for the two swipe tests (B—C and 0—D), implying
that, while the V:H load paths deduced from the non-associated Abaqus analyses are mesh dependent,
a consistent depiction of the response at yield can nevertheless be obtained for a particular mesh and,
hence, a particular length-scale (i.e. lack of solution uniqueness appears to pertain only to the spatial
discretisation). This finding is important because it suggests that the non-associated Abaqus analyses
can be used to provide the appropriate data to calibrate the proposed force-resultant model. Fig.4.11 also
shows that the non-associated load paths plot inside the locus of associated flow yield points, consistent
with Radenkovi¢’s theorem (cf. point 2., page 72). It is noteworthy that a non-associated flow rule brings
about a greater reduction in the peak vertical load than the peak horizontal load — quantification and

further discussion of this observation is provided in §4.5.4).
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To confirm that probe tests could also be used to generate (V,I:I ) yield points for an asymmetric
seabed obeying a non-associated flow rule, three probe tests, DCP11, DCP12 and DCP13, were carried
out for t1 = 0.4, t5 = 0, § = ¢/ = 30° and ¥» = 0°. The results of these tests are shown in Fig.4.12
and, in general, they are seen to be qualitatively similar to those of Tests DCP8-DCP10. In particular,
while load fluctuations are again evident, on average, the loads are seen to tend towards constant values.
Accordingly, as for Tests DCP8-DCP10, the (\7,[:[) load point reached at the end of each test can be
identified as a yield point. In V:H load space, the yield points labelled H, I and J plot within the positive
V, positive H quadrant. Given that the o value assigned for Test DCP11 was 124.0° (such that the flow
vector for this test has a negative du, component), it is likely that the instance of the V:H yield surface
for t; = 0.4, to = 0, 6 = ¢ = 30° and 1 = 0° is solely confined to this quadrant of the V:H plane
(this claim will be confirmed subsequently based upon the results of the batch-set of Abaqus analyses).
Fig.4.13 is a plot of the load paths for Tests DCP11-13 (0—H, 0—I and 0—J) on the same V:H axes
as the locus of the mean of the LB and UB OxLim yield points for t; = 0.4, {5 =0, ) = § = ¢/ = 30°.
The non-associated Abaqus load paths are, again, seen to plot inside the locus of associated yield points,
which is again consistent with Radenkovi¢’s theorem. It is noteworthy that the yield points J and H plot

significantly closer to the locus of associated (V, H ) yield points than the yield point I.

4.5.4 Non-associated flow (¢ < ¢'): V:H yield loci

Summary

Thus far, results have been presented to: (i) validate the Abaqus implementation of the displacement
FE method for the limiting case of associated flow (§4.5.1), (ii) show that mesh refinement leads to a
reduction in the post-yield load (§4.5.2), and (iii) demonstrate that, when a non-associated flow rule is
prescribed, probe and swipe tests can be used to obtain data to infer the response at yield (§4.5.3). With
these preliminaries in place, this section reports the results of the batch-set of Abaqus probe tests carried

out to generate the data needed to calibrate the proposed force-resultant model.

Geometric and constitutive parameter selection

The duration of each Abaqus analysis was several orders of magnitude greater than its OxLim coun-
terpart. Accordingly, due to time limitations, it was not feasible to carry out Abaqus analyses for every
combination of t1, t3, ¢’ and ¢ considered in Chapter 3 (with several values of v for each). Instead,
Abaqus analyses were carried out for just the 19 combinations of 1, t2, ¢’ and 1 listed in Table 4.4, with
a fully rough interface (§ = ¢') assumed in all cases. Each of the pairings of ¢’ and 1) listed in the table
satisfies Bolton’s relation (Eq.2.6.3) for ¢/, = 30°. The non-dilatant case (¢’ = 30°, 1) = 0°) corresponds
(in an idealized sense) to a sand at critical state, whereas the inclusion of positive ¢ for ¢’ = 38° and

¢’ = 46° corresponds to a dense sand.
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ti t2 ¢’ [¢] (both °)
0.2 0.0, 0.1, 0.2 30 [0]

04 | 00,0.1,02 04 | 30[0] 38 [10]; 46 [20]
0.6 | 0.0,0.1,02, 0.4 30 [0]

TABLE 4.4: Values for 1, t2, ¢’ and ¢ for probe tests (all analyses assumed a fully rough interface, § = ¢’).

Job submission procedure

As detailed in §3.6.4, the submission of the OxLim analyses was automated in such a way so as to
generate a set of evenly distributed yield points in the V:H plane. Similarly, it was also desirable to
obtain an even distribution of yield points from the batch-set of Abaqus analyses. However, for the
following two reasons, the procedure used to automate the submission of the OxLim analyses was not

used for the work carried out in Abaqus.

1. The success of the automated submission of the OxLim analyses relied upon the availability of mixed
velocity /load control (to allow the (V, H) yield point corresponding to a prescribed ratio of V' : H
to be found). For the Abaqus analyses, by contrast, the complete elastic-plastic load:displacement
curve could only be obtained using displacement control since there is no further change in the load
on reaching the fully plastic state (such that imposing any such change would result in convergence
failure).

2. The yield load for each Abaqus analysis was not deduced in an entirely automated manner. Instead,
a plot of the resultant dimensionless load, VV2 + H2, against the resultant displacement, vw? + u2,
was first constructed, from which the portion of the test over which the possibly fluctuating resultant
load remained steady (in an average sense) was then selected manually. The V and H components of

the yield load were then calculated as the average values recorded over the plateau region.

For the Abaqus work, therefore, an alternative job submission procedure was sought. The first step
of this procedure was to carry out a set of eight probe tests — the most which could be submitted to
a single core on the supercomputer. The « values for these eight tests were taken at equally spaced
intervals — typically, every 45° for an asymmetric seabed (i.e. one with ¢; # t9). Then, from a plot of the
distribution of yield points in the V:H plane, those pairs of yield points separated by the largest distance
(in V:H space) were identified. For every such pair, new a values lying between the two a values used to
generate the original pair of yield points were selected. Eight further analyses were then submitted, and
the process repeated. Typically, four sets of eight probe tests (i.e. a total of 32 analyses) were carried
out to attain the required coverage in the V:H plane (although, the inability to pinpoint yield points at
designated ratios of V to H — as was the case for the work carried out using OxLim — inevitably meant

that some greater scatter would be evident in the locus of Abaqus-generated yield points).
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V:H loci with ] =, =0.4

For comparative interest, Fig.4.14a is a plot of the locus of (\7,[:[ ) yield points obtained from the
OxLim analyses with ¢y = ¢ = 30°, together with the corresponding flow vectors in dwy/D : dup/D space.
Fig.4.14b is a plot of the equivalent data for the ¢’ = 30° non-dilatant (i.e. ¥ = 0°) case, as obtained
from the Abaqus analyses. The scales of both the V' and H axes in Figs 4.14a and 4.14b are the same
in order to allow the influence exerted by 1 on the size of the yield locus to be readily deduced. The
peak values of V and H for the associated case are 11.60 and 1.56 respectively, whereas their equivalent
values for the non-dilatant case are 8.78 and 1.30 (75.7% and 83.0% of their respective associated values).
Hence, as discussed in preceding sections, the inclusion of a non-associated flow rule is seen to bring about
a reduction in the size of the yield locus relative to its associated counterpart (proportionately more so
along its extent parallel to the V axis than its extent than parallel to the H axis). This observation is
consistent with the theoretical findings of Radenkovi¢ [75], which were noted in §4.5.3.

A second consequence of the inclusion of a non-associated flow rule — which was also discussed in
§4.5.3 — is that the parallel point is shifted closer to the H axis. For the associated case, the parallel
point is at V = 4.44, such that plastic displacement with a positive vertical component (penetration) is
expected over 59.8% of the V extent of the yield locus. On the other hand, for the non-dilatant case,
the parallel point is located at V = 0.76, such that penetration is expected over 91.3% of the V extent
of the yield locus. Accordingly, the flow vectors generated from the non-associated analyses are rotated
relative to their associated counterparts so as to give a greater downward (or lesser upward) component.
Like the associated case, the yield locus for the non-dilatant case appears to have two apexes: one at the
origin and the other at the peak vertical load. A fan of flow vectors is evident at each apex, as indicated
on the plot in Fig.4.14b.

The above comparison provides valuable insight into the influence of the convenient assumption
of associated flow. However, it is also important to draw comparisons between the yield loci (and the
distribution of flow vectors) for different pairings of ¢’ and ¢ which satisfy Bolton’s relation for ¢/, = 30°
(since this implies — albeit in an idealized sense — that the two parameter sets correspond to the same
sand at different relative densities). Figs 4.14c and 4.14d are, respectively, plots of the loci of (\7, H )
yield points for ¢/ = 38°, 1) = 10° and ¢’ = 46°, 1) = 20°. The scales of both of these plots have been
chosen such that the V extent of the three non-associated yield loci plot to the same paper length, thus
allowing their shapes to be readily compared. Such a comparison reveals that, as ¢’ increases, the extent
of the yield locus parallel to the H axis becomes a smaller fraction of its extent parallel to the V axis.
Despite this, the shapes of the yield loci are broadly similar to each other; in each case, apexes at the
origin and maximum V are evident, and also the maximum H is always located at less than half of the
maximum V. Accordingly, it would appear likely that a yield function specified by a pair of parabolas

would fit the yield locus of non-associated yield points to a degree of accuracy commensurate with that
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Loci of yield points and distribution of flow vectors for t; = t5 = 0.4 and various ¢', .
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of the curve fits reported in Chapter 3. A comparison between the scales of the plots in Figs 4.14b—4.14d
reveals that the effect of increasing ¢/ and ¢ (in a manner which maintains ¢, as 30°) brings about a
substantial increase in the size of the yield loci. However, it is important to comment that ¢’ appears to
exert a more substantial influence on size of the yield locus than .

The distributions of flow vectors over the non-associated yield loci in Figs 4.14b-4.14d appear to be
very similar to each other. This assertion is confirmed by Fig.4.15, which is a plot of « against V/v;
for each of the four pairings of ¢ and 1 considered in Fig.4.14. As indicated on this figure, at low
Vv, the inclinations of the flow vectors for the three non-associated cases are particularly similar to one
another, where the data points appear to plot on a common curve. Indeed, the values of V/v; at the
parallel point (where a = 0°) for ¢/ = 30° (¢ = 0°), ¢’ = 38° (¢p = 10°), and ¢’ = 46° (¢p = 20°) are,
respectively, 0.087, 0.080, and 0.076. For high V/v;,, over the upper portion of the yield surface (H > 0),
«a is slightly higher for ¢’ = 30° (¢ = 0°) than ¢/ = 38°, (¢» = 10°) and, in turn, « is slightly higher
again for ¢’ = 38°, ¢» = 10° than ¢/ = 46°, ¢ = 20°. Accordingly, at high V/v;, reducing ¢’ and ¢ (in
a manner which maintains ¢/, as 30°), is seen to introduce a (slightly) greater downward component of
plastic displacement. Importantly, the distributions of flow vectors over the yield loci obtained here are

similar to those deduced elsewhere by experimental means (e.g. Zhang et al. [38]).

V:H loci with t{ = 0.4, 5, =0

Fig.4.16 contains four plots which show the loci of yield points (and the flow vectors) for the same
pairings of ¢’ and 1 considered in Fig.4.14, but for 5 = 0 rather than o = 0.4. As expected from
the discussion in §4.5.3, each yield locus is seen to be confined solely to the positive V', positive H
quadrant of the V:H plane. Also, in keeping with the associated results presented in Chapter 3, the yield
surface implied by each set of yield points appears to posses a pair of apexes. A comparison between the
associated and non-dilatant cases (Figs 4.16a and 4.16b) identifies that reducing 1, for the same ¢, again

leads to a reduction in the size of the yield surface (e.g. the peak V for the associated and non-dilatant
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F1G. 4.17: Loci of yield points in V:H space for ¢/ = 6 = 30°, ¢» = 0°, {; = 0.4, various 5.

cases are, respectively, 2.61 and 2.19 — a 16% reduction). The comments given above on the relative
influence of ¢’ and 1 on the size of the yield locus appear to hold also for this seabed surface geometry.

A comparison between the plots in Figs 4.16a and 4.16b also reveals that each non-dilatant flow
vector on the upper portion of the yield locus is rotated clockwise with respect to its counterpart at
the corresponding position on the associated yield locus. This means that penetration is expected to
accompany yield at lower values of V for the non-dilatant case relative to the associated case. Fig. 4.16b
also shows that, providing V is greater than zero, negative horizontal plastic displacement is always
accompanied by penetration. Accordingly, this data suggests that, in general, the pipe would be expected
to undergo penetration on reversing the direction of lateral displacement. For the other non-associated
cases (shown in Figs 4.16b—4.16d), the shapes of the yield loci are seen to be broadly similar, although

at the peak V, the ratio of the H to V is seen to decrease slightly with increasing ¢'.

V:H loci with ¢/ =6 = 30°, ¢ = 0°, £; = 0.4 and various s

Fig.4.17 is a plot showing the yield points in Figs 4.14b and 4.16b on a common set of axes. Also
included on this plot are the yield points for 5 = 0.1 and t5 = 0.2 (both for § = ¢/ = 30°, ¢ = 0° and
t1 = 0.4). This plot reveals that the yield points on the upper portion of each yield locus (for different
to) appear to plot along a common curve. This observation was also noted and discussed in Chapter 3,
based on the OxLim data (cf. Figs 3.15 and 3.17, respectively). Also shown on the plot in Fig.4.17 are
the o = 0° and a = 30° flow vectors for all four ¢5 values. The a = 0° flow vectors for each case are seen
to plot close to each other and, similarly, for 5 > 0, the e = 30° flow vectors also plot close to one other
(although the a = 30° flow vector for fy = 0 is located at a lower value of V than for the other three
cases). The observation that yield points corresponding to the same value of a, but different values of
to, plot at approximately the same point in V:H space suggests that the failure mechanisms for a certain
range of o values are largely independent of t5. However, the fact that the a = 0° flow vector for t5 = 0

occurs at a lower value of V than the other three cases suggests that, when f5 is zero (or at least when

it takes a value approaching zero, and certainly less than 0.1), its influence on the shape of the upper
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portion of the V:H yield locus is no longer negligible. This was first discussed in Chapter 3 (cf. the
comments on the effect of no surcharge behind the pipe for the limiting case of {5 = 0 in §3.7.2) and
was used to aid the formulation of the proposed force-resultant flow rule (this will be discussed further

in §4.6).

4.5.5 Non-associated flow (¢ < ¢'): failure mechanisms

Subsequently (in §4.6), details are provided as to how the results of the batch-set of Abaqus analyses
were used to aid the calibration of the proposed force-resultant model. As a precursor to this discussion, it
is useful to provide some brief commentary on the failure mechanisms deduced from the Abaqus analyses
performed with non-associated flow.

Fig.4.18a is a copy of the plot in Fig.4.16b, except that only a subset of eight flow vectors (which
are labelled with their respective «a values) is shown. Figs 4.18b-4.18i are the displacement vector fields
corresponding to each analysis for which a flow vector is included on the plot in Fig.4.18a. In Fig. 3.13
the failure mechanisms for the same seabed geometry ({7 = 0.4, to = 0), at the same « values, but
with an associated flow rule (¢ = ¢/ = 30°), were presented. Accordingly, a comparison between Figs
4.18 and 3.13 allows for an immediate insight into the influence of non-associated flow.!* The following

summarises the key observations from this comparison.

e The velocity vector field for @ = 0° in Fig.4.18b suggests that the failure mechanism is single-sided
(solely confined to the right of the pipe centre). This is confirmed by the plot of the U = 0.99 contour
in Fig.4.19. By contrast, for an associated flow rule, the failure mechanism is two-sided, as shown
in Fig.4.19 and also Fig.3.9. For an associated flow rule, the yield point for the o = 0° analysis is
located close to positive apex of the yield surface while, for the non-dilatant case, the yield point is
located on the upper portion of the yield surface (at a V value which is less than half of the maximum).
Accordingly, these observations confirm the general tendency that failure mechanisms accompanying
yield points which plot on an apex of the yield surface are two-sided, while those that plot on a smooth
portion are single-sided. The identification of a single-sided failure mechanism for the o = 0°, non-
dilatant analysis is consistent with the observation that (V, H ) yield points grouped around the o = (°
flow vectors for various t2 plot along a common curve (as discussed above in relation to Fig.4.17).

e In §3.6.5, it was noted that — since the failure mechanisms for « values around 0° are two-sided —
lateral displacement would be accompanied by the redistribution of soil both ahead of, and behind,
the pipe. It was also noted that such observations are important since the proposed force-resultant

model relies upon heuristics to predict the evolution of the seabed. Now, in light of the non-associated

1 Gtrictly, the comparison between the failure mechanisms in Figs 4.18 and 3.13 is not an exact one in the
sense that the length of the vectors in Fig.3.13 is correlated to velocity magnitude (that is, the instantaneous
displacement rate at the onset of yield), while the length of the vectors in Fig. 4.18 is correlated to the total
displacement magnitude (at a point in the post-yield regime). Nevertheless, both types of plot provide broad
encapsulations of the failure mechanisms and are suitable for qualitative comparisons.
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Fi1G. 4.18: Results for t; = 0.4, t5 =0, ¢’ = § = 30° and ¢ = 0°.

(a) Associated flow: ¢'=1=30° (OxLim). (b) Non-associated flow: ¢'=30°, 1)=0° (Abaqus).
Fic. 4.19: Failure mechanisms, as depicted by the 0.99 contours of utilisation, for ; = 0.4 and ¢ = 0.
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results, it is evident that two-sided failure mechanism are only evident if « takes a positive value —
for example, a two-sided failure mechanism is evident for the o = 45° case in Fig.4.18c. This implies
that the redistribution of soil to either side of the pipe only occurs if the pipe is undergoing some
penetration during lateral displacement.

e The extent of the failure zones deduced from the non-dilatant analyses are substantially smaller than
their associated counterparts. The difference is particularly striking for o = 135° (see Figs 4.18¢ and
3.9e) and v = 337.5° (see Figs 4.18h and 3.9h). The reduced extent of each non-dilatant failure zone is
likely to be the underlying cause of the reduced size of each V:H yield locus relative to its non-dilatant

counterpart, as discussed above in relation to Figs 4.14 and 4.16.

4.6 Analysis of results

The overarching aim of this phase of the research was to determine the influence of a non-associated
flow rule on the components of the proposed force-resultant model. From the batch-set of Abaqus results,
this section outlines the strategies used to determine: (i) the yield function and hardening parameters,

and (ii) the flow rule.

4.6.1 Yield function, f, and hardening parameters, Xy

As discussed in §4.5.4, the shapes of the (V, ﬁ) yield loci determined from the associated and non-
associated analyses, for the same ¢; and ¢, were found to be similar. Accordingly, the yield function, f,
was assumed to take the same form as that proposed in Chapter 3 — namely, a piecewise construction of

two parabolas, as given by:

f=max(fi, f2) (3.7.1 bis.)
where:
4V 1% H
=——(1-= )+ 3.7.2 bis.
h V1< V1>+H1 (3.72 bis)
4V 1% H
= \1-7 ) 7.3 bis,
f2 V2< V2> 2 (3.7.3 bis.)

The procedure to determine values for the hardening parameters was the same as that reported in Chapter
3. Table 4.5 (page 168) lists values of Vi, Hy, Vo and Hs for each of the combinations of #1, t2, ¢ (= )
and 1 considered in the batch-set of analyses. Also listed in the table are s/4'D? (the normalized distance
between the apexes of the yield surface), 6. (the angle between the V axis and the line joining the two
apexes of the yield surface) and R? and R3 (the coefficients of determination for f; = 0 and f» = 0,
respectively). Figs 4.20a and 4.20b show the variation of R? and R3 with #; for all 5. The lowest values
for R? and R3 are, respectively, 0.861 and 0.895, suggesting that the curve-fitting strategy was successful
and, thus, validating the choice of yield function. Figs 4.21a and 4.21b show the variation of 6, and s/y/ D2

with t9 for £; = 0.4. These plots suggest that, as s reduces (with #; constant), the size of yield surface
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Fi1G. 4.21: Variation of s/+/p? and 0. with #, for £; = 0.4.

(as quantified by s/v/D?) reduces, and its asymmetry about the V axis (as quantified by 6.) increases.
The influence exerted by f5 on s/y'D? and 6, is, again, more marked for Zo < 0.1. As ¢’ increases (and,
hence, 1 also increases), the size of the yield surface is seen to increase substantially, and its asymmetry
about the V axis is seen to reduce. These trends echo those noted in §4.5.4 (and also those discussed in
Chapter 3 based on the OxLim results).

To allow for a robust implementation of the proposed force-resultant model, a scheme was required
to determine values of the hardening parameters for any combination of ¢; and ¢ which might be
encountered during a particular analysis (rather than simply the limited range of values listed in Table
4.4). In formulating this scheme, it was of interest to assess whether the key trends linking the hardening
parameters to t; and #3 as inferred from the OxLim-generated results (cf. Section 3.7.2) were also evident

in the non-associated Abaqus-generated results. Fig.4.22 contains two plots to show the variation of
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F1G. 4.23: Variation of Vi/v, o, and Hi/f, ., with 5 for {1 = 0.4, together with the data deduced from the
OxLim analyses.

Vi/i10.4 and Hi/fH, o4 with #5 for all analyses carried out with #; = 0.4 (where Vj g4 and FI170,4 are,
respectively, the values of Vi and Hy for t] = 1y = 0.4). In this space, the data is seen to collapse onto
approximately a common curve for all three pairings of ¢ and . This suggests that the proportional
change in the size of the yield surface due to a given change in ¢; and/or 5 is approximately the same
for values of ¢/ and ¢ which satisfy Bolton’s relation for ¢., = 30°. The data in Fig.4.22 is re-plotted in
Fig. 4.23, together with the data deduced from the OxLim analyses for a range of values for ¢/ (= ¢) and
0. This figure shows that the data from the non-associated analyses collapse onto (approximately) the
same curve as the data from the associated analyses. Therefore, it would appear that the proportional
change in the size of the yield surface due to a given change in ¢; and/or 5 is approximately the same
for all combinations of ¢', ¥ and §. Stated equivalently, this means that the influence of changing ¢', v

or § (relative to some fixed values) is to scale the hardening parameters by some constant values.
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The above findings suggest that a set of scaling factors could be used to reduce each of the associated
values for Vi, Hy, Vo and Hs (as listed in Table 3.4) to establish a hardening parameter look-up table
for a non-associated material (drained sand). Accordingly, using the subscripts, A and NA, to denote

‘associated’ and ‘non-associated’ respectively, the proposed correction scheme takes the form:
Vina =CaVia, Hina=CpHia, Vona =(cVoa, Hona=C(pHoa (4.6.1)

where (o, p are constants for a given value of ¢/. However, since the yield surface must be symmetric
about the V axis for t; = t5 (otherwise the response to positive and negative H would differ), (4 was
required to take the same value as (¢ and, likewise, (g was required to take the same value as (p. The
plots in Fig. 4.24 were constructed to aid the selection of appropriate values for (4 (= (¢) and (g (= (p).
The hollow, square data markers on the plot in Fig.4.24a correspond to the (VLA, ‘71,NA) data points
for ¢ = 30°, while the solid, square data markers correspond to the (\72 As V2,NA) data points, also for
¢’ = 30°. As shown on the figure, the line which passes through the origin and provides the best fit
to all the square data markers has a gradient of 0.81; accordingly, for ¢’ = 30°, this is the appropriate
choice of value for (4 (= {¢). The hollow and solid circular markers on the plot in Fig.4.22a correspond
respectively to the (VLA, Vl,NA) and (VZA, V2,NA) data points for ¢/ = 38°. Again, the line which passes
through the origin and provides the best-fit to all the circular data points is shown. Its gradient is 0.64
and, accordingly, for ¢’ = 38°, this is the appropriate choice of value for (4 (= {¢). Fig.4.24b is the
analogous plot to Fig.4.24a for the hardening parameters, H; and Hy. From this plot, for ¢/ = 30°
and ¢’ = 38° respectively, the appropriate choices of values for (g (= (p) are 0.85 and 0.69. The lowest
coefficient of determination of the four best-line fits in Fig.4.24 is 0.99, which shows that the strength of
the linear correlation between the associated and non-associated values for each hardening parameter is
very high. Tt is noteworthy that, for both ¢/ = 30° and ¢’ = 38°, (4 (= (¢) is less than (5 (= (p). Hence,
the inclusion of non-associated flow is seen to have a more substantial effect on the peak vertical load
capacity than the peak horizontal load capacity. Also, (4 (= {¢) and (g (= (p) are higher for ¢ = 30°
than for ¢’ = 38° which suggests that the inclusion of a non-associated flow rule has a proportionally
greater effect on the size of the yield surface for higher values of ¢’ than lower ones.

With regard to the implementation of the model, it was deemed appropriate to use linear interpolation
to determine (4 (= {¢) and (g (= (p) for values of ¢’ lying between 30° and 38°. OxLim analyses were
not carried out for ¢/ > 40° and, hence, the values for Vi o, Hy a, Vo and Hy o for ¢/ = 46° — which
are needed in the above scheme to deduce the values of (4 (= (¢) and (g (= (p) for ¢’ > 38°— are not
known. Nevertheless, if required, a value of ¢’ other than 46° could be readily taken as a reference value
to obtain the Vl,A, ﬂLA, VZA and _HQ,A values against which the values of Vl,NA, I:ILNA, ‘72,NA and _HQ,NA
could then be correlated. However, for brevity, details of such a correlation are not reported here as the

simulations which are reported in the subsequent chapters of the thesis all make use of ¢/ < 38°.
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Fic. 4.24: Plots showing the correlation between the hardening parameters deduced from: (i) the associated,
OxLim analyses and (ii) the non-associated, Abaqus analyses.

It is important to emphasize that the values for (4 (= (¢) and (g (= (p) listed above are a direct
consequence of the chosen mesh; if a finer mesh had been used, the values for (4 (= {¢) and (g (= (p)
would have been lower than those given here. As discussed in §4.4.1, the meshes were selected for prag-
matic reasons and, as such, the width of an element located within the localized zone was substantially
greater than the width of a typical shear band. Despite this, by using values of (4 (= {¢) and (g (= (p)
which are less than one, more realistic predictions of the V:H load capacity afforded by the seabed were
expected than if the hardening parameters deduced from the associated OxLim analyses had been used.
In Chapters 5 and 6, comparisons between the predictions of the model and experimental data will be
presented. There, the suitability of the chosen values for the hardening parameters — which depend on
Ca(=¢c) and (g (= (p) — in generating a yield surface of the appropriate dimensions will be assessed.

Finally, it is of interest to comment upon the sensitivity of V5 and Hs to ¢; and, likewise, the
sensitivity of V; and H; to t,. The discussion in §4.5.5 provided broad support for the notion that the
failure mechanisms accompanying yield points which plot on the f; = 0 portion of the yield surface are
predominantly single-sided (confined to the right of the pipe centre for rightward movement and to the
left of the pipe centre for leftward movement) and, hence, are independent of #5. Accordingly, it is likely
that V; and H; are largely insensitive to #5. This finding, together with that from the above discussion
— namely, that the influence of changing either ¢, 1) or ¢ is to scale the hardening parameters by some
constant values — implies that the yield points which plot on the f; = 0 portion of the yield surface
should collapse onto a common curve in V/Vi symm @ H/Hi ymm space (where Vi symm and Hi symm are,
respectively, the values of Vi and H; when 5 is set to take the same value as t1). This hypothesis is
broadly confirmed by the plot in Fig.4.25, which shows those (V/Vi symm, Z/H1 symm) yield points which
posses flow vectors with positive horizontal components for all the analyses carried out in the batch-set.

Also included on this plot are the flow vectors of each analysis for both @ = 0° and o = 30°. All of the
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Fic. 4.25: Loci of yield points with flow vectors possessing positive horizontal components, for all #;, in
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F1G. 4.26: Loci of yield points with flow vectors possessing negative horizontal components, for 5 > 0.1, in
VIV, symm T/ Ha symm SPACE.

a = 0° flow vectors are bounded between V/Vi  ymm values of 0.069 and 0.245 while all of the a = 30°

flow vectors are bounded between V/Vi ymm values of 0.403 and 0.612.

4.6.2 Force-resultant flow rule and non-association parameters, x4

Piecewise formulation, following Koiter [126]

If associated flow were to be assumed for the proposed model then, since the yield function is defined

in a piecewise form, the flow rule would also need to be defined by a piecewise function, according to:

5)\1% for f1 = 0, f2 <0
Jo
dep = 5)\2% for fo=0,f1 <0 (4.6.2)
5)\1% + 5)\2% for f1 = fo =0,
Jo Jo

where A1 and d\o are the infinitesimal plastic multipliers. Eq.4.6.2 implies that if the yield point is
located on a smooth portion of the yield surface, then the direction of incremental plastic displacement
in dw,:0u, space is normal to the yield surface (see Fig.4.27a). Otherwise, if the yield point is located

at either apex, then the direction of incremental plastic displacement in dw,:0u, space is given by a
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(a) Associated flow. (b) Non-associated flow.

F1G. 4.27: Graphical representation of flow rules in V:H (dw,:6u,) space.

conical combination of the normals to the two smooth portions of yield surface which meet at that apex.
Consequently, a range of incremental plastic displacement directions spanning between the normals to
fi=0and fy =0 are admitted at either apex, as shown schematically in Fig.4.27a.

As discussed in §4.5.4, the distribution of flow vectors over the yield surface implies that a non-
associated flow rule is required for the proposed force-resultant model. Eq.4.6.2 is readily generalized to

the non-associated case, as follows:

o 20 for f1 =0, f» < 0
oo
dep = 5)\2% for fo=0,f1 <0 (4.6.3)
29 4 50,292 for = =0,
Jdo oo

where g, and g9 are plastic potential functions. The interpretation of this choice of function for the flow
rule is very similar to its associated counterpart; the only difference is that the normals to the plastic
potential functions, g1 and go, are used to define the incremental plastic displacement direction rather

than the yield function itself (see Fig.4.27b). Families of parabolas were chosen for g; and g, as given

by:
4 1% VN H+vmW
VH =——(1- = +— )+ =L 4.6.4
VA (1+m) ( V{> ("1 V{) A% (4.6.4)
4 1% VN H -l
VH =——— _(1-= NELA 4.6.5
(V10 (1+1m)? < Vz’) <772 V2'> B2Vy (4.6:5)

where (1, n1, 71, B2, 72 and 72 are non-association parameters (the constituents of x4 for the proposed
model) while V] and VJ are dummy variables. Following the usual convention (as introduced in §2.5),
values for the dummy variables were chosen to fit g = 0 and g2 = 0 through the current (V, H) yield
point. However, there are two values of V{ which allow g; = 0 to pass through the current (V, H) yield
point (one positive, and one negative) and, likewise, there are two values of V which allow gy = 0 to pass
through the current (V, H) yield point (again, one negative and one positive). In the implementation of
the model — and, accordingly, in the procedure which was used to select the values of the non-association

parameters — positive values for V/ and V4 were selected. Furthermore, the non-association parameters
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(b) B2, m2 and 2, the non-association parameters defining go.
F1G. 4.28: Geometric interpretation of the non-association parameters used to define the plastic potentials.

were all chosen to take positive values, such that each g; = 0 curve opens outwards with decreasing H
(in the same manner as fi; = 0) while each go = 0 curve opens outwards with increasing H (in the same
manner as fo = 0); see the schematics on the right-hand side of Fig. 4.28.

The geometric interpretation of the non-association parameters, 31, 11, B2 and 72, is most readily

deduced by introducing the auxiliary variables H{ = H + 1V} and H5 = H — V5 to rewrite g; and g9

as:
4 Vv Vv HT
VH) = ———  _(1-~ PN I 4.6.6
o (VA1) (1+m)° < Vf) (771 Vf) BV (4.6.6)
4 Vv Vv H3
VH)=——— _(1-2 LA D I 4.6.7
92 (V. 112) (1 +m2)° ( Vz’) (772 V2,> B2V ( )

In V:HY space, as shown schematically on the left hand size in Fig.4.28a, V] is the positive V intercept
of each g1 =0 curve, 7, is the ratio of the magnitude of the negative V intercept to V{, and f is the ratio
of the peak Hj to V{. Therefore, it follows that the family of g;=0 curves are geometrically similar, with
V] controlling the size of each curve. For each g, = 0 curve, 3 and 7, fulfil analogous roles to 31 and ;.

The roles of the remaining non-association parameters, v; and 79, are most readily explained by
initially considering 1 = 72 = 0 such that H = Hf = Hj. Under this restriction, it is clear from the
above discussion that V] would need to be zero for a g1 = 0 contour to pass through the origin (and,
likewise, V5 would need to be zero for a go = 0 contour to pass through the origin). This is problematic
because the derivatives of g; and go with respect to V' and H — which are needed in the numerical
implementation of the model — are undefined if V{ and V4 are zero. To overcome this problem, positive

values for v; and 72 were used. This has the effect of shifting the ¢y = 0 curves in the negative H
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(b) t1 = 04,1, =0, ¢ =3 = 30°, ¢ = 0°.
Fic. 4.29: Fit of f = 0 to the measured yield points, together with the corrected yield points.

direction so that positive V{ is then required to fit gy = 0 through the origin. Analogous arguments hold
for the go = 0 curves.

Of course, only three variables are required to define uniquely a parabola which is symmetric about
a constant value of V' and, yet, four variables: 31, n1, 71 and V{, have been introduced for g; = 0, and,
likewise, four variables: (3, 72, 72 and VJ have been introduced for go = 0. Accordingly, v was taken
taken as unity to allow g; = 0 to be defined uniquely by £y, 71 and V] (and, similarly, v2 was also taken
as unity to allow go = 0 to be defined uniquely by (2, 72 and V). Of course, other positive choices for
71 and 7, could have been chosen, in which case alternative values of £y, n1, V{, B2, n2 and V;, which

give the same set of parabolas as those for v; = 79 = 1, would then have been found.

Procedure to determine non-association parameters

For each combination of t1, t3, ¢/ (=) and 9, a procedure was sought to find the values of the
non-association parameters, 51, 11, G2, and 1, that gave the set of flow vectors in closest agreement to
those deduced from the Abaqus analyses. In the following, the key steps of the optimization problem

which was formulated to find these best-fit non-association parameters are detailed.

1. In the first step, the measured yield points were corrected to plot upon the yield surface, f = 0. For
simplicity, this step was carried out by holding V' constant and adjusting each of the two corresponding
H values by the smaller of the two magnitudes needed to satisfy f; = 0 and fo = 0. In accordance
with the piecewise definition of the flow rule (Eq.4.6.3), (1, n1, B2 and 79 dictate the inclination of

the flow vectors over the smooth portions of the yield surface whereas, at the apexes, the flow vectors
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are given as the conical combination of the normals to the adjoining smooth portions of the plastic
potentials. Accordingly, any yield points with either V< 0 or V' > V. (i.e. those which plot on an
apex, or lie outside the range of V' over which the yield surface is defined) were omitted from the
optimization problem to find the best choice values for 81, 11, B2 and 72. Figs 4.29a and 4.29b are
plots showing the original and corrected loci of yield points for both symmetric (f; = t3 = 0.4) and
asymmetric (f; = 0.4, to = 0) seabed surfaces for ¢’ = 30° and ¢ = 0°.

2. For chosen starting estimates to 31 and 7, the positive V{ values which allow g; = 0 to pass through
each yield point on the f1=0 portion of the yield surface were evaluated. Then, apreq — the angle
between each predicted flow vector and the H axis — was calculated from %. Equivalent calculations
were also carried out for the yield points located on the fo=0 portion of the yield surface.

3. The suitability of the chosen values for 3; and 7; was then quantified by evaluating:

mi
El = Z (Oépred,i - ameas,i)Q (4-6-8)

i=1

where pred,i and ameas,; are, respectively, the predicted and measured (Abaqus) values of a for the
i = 1...m, yield points on the smooth portion of the f; = 0 contour. Likewise, Fy — given by an
analogous expression to Eq.4.6.8 — was used to quantify the suitability of G2 and 7, in fitting plastic
potentials to give flow vectors of the appropriate inclination at the mso yield points on the fo = 0
contour of the yield surface.

4. A pair of optimization problems was then formulated; the first to find the values of Gy and 7; which
minimize F;, and the second to find the values of 35 and 79 which minimize E,. However, in order
for the flow rule to operate as intended, it was necessary to add some constraints to the optimization
problems. Firstly, (31, n1, B2 and 7y were all constrained to take positive values (to give g1 = 0
contours which open outwards with decreasing H and, likewise, go = 0 contours which open outwards
with increasing H). Secondly, at the origin in V:H space, 51 and 7, were constrained to give a flow
vector with apreq<<0° and, similarly, 3> and 1o were constrained to give a flow vector with apreq>180°.
Fig.4.30 depicts the problem which could have arisen if these constraints at the origin had not been
enforced. The figure shows a flow vector with a negative vertical component on the f; = 0 portion
of the yield surface, and a flow vector with a positive vertical component on the fo = 0 portion of
the yield surface. When combined, the resultant flow vector has a downward component, which is
clearly inappropriate. Accordingly, the above constraints at the origin in V:H space ensured uplift

was predicted, as intended.

The above procedure was automated within a MATLAB script. Indeed, the optimization problem itself
was solved with MATLAB’s ‘fmincon’ function (part of the optimization toolbox) using the interior-point
setting. Fig.4.31 contains plots showing the families of plastic potentials, and the predicted flow vectors,

as given by the solution of the optimization problems outlined above.
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F1G. 4.30: Plastic potential fitting at the apex of the yield surface at the origin in V:H (dwy:0u,) space.
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Fig.4.32 contains two plots to demonstrate the success of the plastic potential fitting strategy;
Fig.4.32a for t; = to = 0.4 and Fig.4.32b for ¢{; = 0.4 and ¢, = 0. The abscissa of both plots is
the dimensionless vertical load, V, while the ordinate is « (the clockwise positive angle between the H
axis and each flow vector). The solid line is the predicted direction of incremental plastic displacement,
while the markers are the measured (Abaqus) values. In both plots, the solid line consists of vertical,
straight segments at V' = 0 since there is no unique plastic displacement direction at (V,I:I ) = (0,0).
Likewise, at the other apexes (V = 2.2 for t; = 0.4, {5 = 0 and V = 8.7 for {; = 0.4, t3 = 0), similar
vertical, straight segments are present. The agreement between the predicted and measured flow vectors
is, in general, very acceptable. Fig.4.33 contains two plots in V:H space showing a comparison between

the measured (Abaqus) flow vectors and those predicted by the proposed flow rule.

Plastic potential fitting results

For each of the 19 combinations of t1, 2, ¢’ and v considered in the batch-set of Abaqus analyses,
Table 4.5 lists the values of the non-association parameters which were found from the optimization
procedure outlined above. The final error norms, F; and Ejy, are also listed in the table. The highest
values of £y and Fy are, respectively, 11.46° and 11.20°, thus revealing the success of the plastic potential
fitting strategy.

For a robust implementation of the proposed force-resultant model, a scheme was required to de-
termine values for the non-association parameters for any t; and 5 which might be encountered during
an analysis (and, indeed, for any prescribed pairings of ¢’ and 1 which satisfy Bolton’s relation for

! = 30°). Ideally, such a scheme should account for the dependence of of the non-association parame-
ters on t1, to, ¢’ and 1. However, because only limited data were collected, the following conclusions

were used to develop a simplified scheme.

1. At the same value of V/v; on two instances of the V:H yield surface corresponding to two different
pairings of ¢’ and 1) (both satisfying Bolton’s relation for ¢/, = 30°), the inclination of the flow vectors

was approximately the same.
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FiGg. 4.32: Predicted against measured plastic displacement directions for ¢’ = § = 30°, 1) = 0°.

2. The failure mechanisms corresponding to yield points which plot on the f; = 0 portion of the yield
surface (but not necessarily at either apex) were found to be independent of ¢y (at least for ¢ > 0.1).
This implies that, for all (V, H) yield points which satisfy f; = 0 and fo < 0, the direction in which
the pipe will displace plastically is independent of ¢5 (at least for to > 0.1). Likewise, these statements
hold in reverse concerning the influence of #; on the flow vector direction for yield points which satisfy
fo=0and f1 <O.

3. At the same (V, H ) point on two instances of the f; = 0 portion of the yield surface corresponding to
different t5, the inclination of the flow vectors was found to be approximately the same (at least for
to > 0.1). This statement also holds with regard to the inclination of the flow vectors over the fo =0
portion of the yield surface for various ¢; (at least for ¢; > 0.1).

4. For a symmetric seabed, t; = ¢, the flow vectors must be symmetric about the V axis (otherwise the

response to positive and negative H would then differ).

With regard to the selection of the values for the non-association parameters, these findings respectively

suggest the following trends.

1. By, m, B2 and 79 are weak functions of ¢’ and ¢ (at least for values of ¢’ and ) which satisfy Bolton’s
relation for ¢, = 30°).
2. (31 and n; are independent of t5 and, likewise, 32 and 72 are independent of ¢1. Indeed, this assumption

was implicitly made in the formulation of the optimization problem outlined above.
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F1G. 4.33: Plots in V:H (Sws/D:5un/D) space, for ¢/ = § = 30° and ¢ = 0°, showing: (i) the flow vectors
predicted by the proposed flow rule and (ii) the measured flow vectors deduced from the Abaqus
probe tests.

3. 1 and n; are largely insensitive to #; and, likewise, 32 and 7 are largely insensitive to fs.

4. For t; = tg, it is necessary to have §; = O and 171 = 7).

Together, these trends imply that (1, 11, G2 and 72 are expected to be approximately constant for all ¢y,
to, ¢’ and v, at least for £; > 0.1 and ¢ > 0.1. For (3; and 7y, this is confirmed broadly by the plots in
Figs 4.34a and 4.34b. For 31 and 70, the standard deviations are just 0.053 and 0.081.

Since 31 and (35 were to be taken as constants for £; > 0.1 and 5 > 0.1 then — given the last of the
four points listed above — the appropriate choice of value for 31 = (35 was determined by extracting those
values of (35 for t5 > 0 together with all the values of 31 (since no analyses were carried out with ¢; = 0)
and, then, finding the average of all the extracted 3 and (o values. This average value was found to be
0.91. As noted above, for t5 < 0.1, the values for 35 were lower than for 5 > 0.1 (the average value being
0.55). For simplicity, a linear fit was assumed between (f2, 32) = (0,0.55) and (t2, 32) = (0.1,0.91), such

that the following function was used to calculate [o:

3.65ty +0.55 for t < 0.1
B2 = (4.6.9)
0.91 for £5 > 0.1.
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Fic. 4.34: Plots of the variation of 81 and n; with #; and the variation of the 82 and ns with f5 for a range of
¢ and ¢ which satisfy Bolton’s relation for ¢/, = 30°.

The same interpolating function was used for 3; (with t5 replaced by ¢1). Fig.4.35a is a plot of the
data shown in Fig.4.34a overlaid by the data shown in Fig.4.34b. The solid markers are the (¢, 3)
data points while the hollow data markers are the (f2, 32) data points. The linear interpolation scheme
outlined above is superimposed on this plot. For simplicity, constant values were taken for the remaining
non-association parameters, n; and 7y, for all ; and ¢5. The average of all the values of 7, and 7 listed in
Table 4.5 is 0.84. The scatter in the values of 7, for {2 = 0 (see Fig. 4.34d) is not overly troublesome since,
when a, cyclic reversal occurs, the pipe immediately starts penetrating such that ¢5 is only momentarily

equal to zero.

4.7 Concluding comments

In this chapter, small-strain displacement FE analyses to determine the resultant load:displacement
path accompanying the indentation of a plane strain pipe segment into an idealized seabed were repor-
ted. The seabed was modelled as an elastic perfectly plastic material obeying isotropic linear elastic
relations and the Mohr-Coulomb (MC) yield and plastic potential functions. The primary motivation
for this phase of research was to investigate the influence of the non-associated flow rule (¢ < ¢’) on the
load:displacement path. Some theoretical preliminaries on the implications of assuming a non-associated
flow rule were discussed, and observations from other related investigations were detailed. In brief, lack of
uniqueness and localization are both possible if a non-associated flow rule is prescribed and the hardening

modulus, h, is less than a certain positive threshold.
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F1G. 4.35: Plots of the proposed interpolation scheme for the non-association parameters, 51, 71, 52 and 7s.

Details of the chosen methods and procedures were then provided, including a discussion on plane
strain strength and dilatancy parameter matching between MC and Drucker-Prager (DP). For the
limiting case of associated flow (1) = ¢'), results were presented to validate the Abaqus implementation
against lower and upper bounds to the exact solutions computed using OxLim. For analyses assuming
a non-associated flow rule, mesh sensitivity analyses were carried out which confirmed the presence of
localization and identified that the ultimate capacity decreased with increasing mesh refinement. The
results of a batch-set of probe tests, which made use of a mesh with an element width significantly in
excess of that of a typical shear band, were then reported. The capacities obtained from these analyses
were adjudged to be overestimates of those which would have been attained if an appropriate length-scale
had been used in a regularized continuum.

Based on the batch-set of probe tests, the yield function proposed in §3.7.1 (i.e. that given by a
pair of parabolas) was found to provide a good fit to the locus of yield points in V:H space. Results of
regression analyses to determine values for the hardening parameters were then provided, and in light of
these results, a scheme was proposed to determine values for the non-associated hardening parameters.
Finally, details of the proposed force-resultant flow rule were provided and the procedure adopted to

determine values for the non-association parameters was outlined.



t ta | ¢ (%) (®) Vi H,y Vo Hy R? R2 s/y'D? 0. (°) B1 m B2 72 E, E
0.2 0 30 0 1.791 1.655 0.178 0.010 0.986  0.999 1.235 17.570 0.902 0.715 0.580 0.711 6.098 10.300
0.2 0.1 30 0 3.993 2.407 2.690 0.988 0.928 0.983 3.389 5.335 0.919 0.849 0.904 0.958 6.811 4.555
0.2 0.2 30 0 4.586 2.336 4.586 2.336 0.960  0.960 4.586 0.000 0.929 0.882 0.929 0.882 9.179 9.179
0.4 0 30 0 3.430 4.186 0.203 0.010 0.977  0.988 2.338 25.000 0.921 0.663 0.549 0.548 5.932 6.076
0.4 0.1 30 0 6.703 5.522 2.848 0.753 0.912 0.992 5.148 11.526 0.966 0.775 0.909 1.010 7.474 6.479
0.4 0.2 30 0 7.744 5.581 5.176 2.270 0.894 0.948 6.562 6.498 0.970 0.778 0.955 0.918 10.260  8.203
04 04 30 0 8.757 5.293 8.757 5.293 0.938 0.938 8.757 0.000 1.003 0.823 1.003 0.823 6.112 6.112
0.6 0 30 0 4.728 7.159 0.209 0.010 0.956  0.980 3.319 31.150 0.945 0.632 0.506 0.426 8.026 9.565
0.6 0.1 30 0 8.990 9.375 2.723 0.587 0.927  0.996 6.722 16.433 0.949 0.727 0.879 0.862 7.900 7.275
0.6 0.2 30 0 10.247 9.801 5.205 1.840 0.892 0.989 8.282 11.212 0.978 0.763 0.956 0.895 10.762 5.892
0.6 0.4 30 0 11.836 9.914 9.517 5.110 0.861 0.956 10.836 4.163 0.996 0.777 0.995 0.839 10.491 2.231
0.4 0 38 10 10.452 10.714 0.413 0.010 0.984 0.997 7.134 20.230 0.934 0.660 0.536 1.109 9.827 10.021
0.4 0.1 38 10 21.206 15.276 10.257  2.579 0.957 0.984 16.818 8.861 0.894 0.773 0.816 1.013 11.460 5.769
0.4 0.2 38 10 25.772 15.201 17.725 6.770 0.926 0.962 21.957 5.103 0.867 0.884 0.861 0.939 2.954 4.879
04 04 38 10 27.905 14.982 27.905 14.982 | 0.895 0.895 27.905 0.000 0.942 0.859 0.942 0.859 8.430 8.430
0.4 0 46 20 45.292 36.371 4.958 0.228 0.954 0.995 32.390 13.782 0.863 0.723 0.565 1.320 7.430 5.023
0.4 0.1 46 20 87.518 51.437 50.678 12.928 | 0.955 0.977 72.137 6.050 0.830 0.846 0.767 1.024 2.685 5.648
04 0.2 46 20 101.531 52.451 78.331 27.169 | 0.924  0.952 90.872 3.144 0.834 0.877 0.818 0.968 2.989 4.398
04 04 46 20 113.965 49.472 113.965 49.472 | 0.896  0.896 113.965 0.000 0.854 0.885 0.854 0.885 11.198 11.198

TABLE 4.5: Values for the hardening parameters (and R?, R3, s/+'D?, §.) and the non-association parameters (and E; and Es) for various #1, f2, ¢’ (= 6) and 1.
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5

Experimental investigation

5.1 Introduction

A key assumption underpinning the proposed force-resultant model is that a unique V:H yield surface
exists for a seabed of a particular surface geometry (as characterized by the parameters, ¢; and t9)
and of spatially and temporally constant strength. This assumption is critical since it allows the path
dependence inherent to the problem to be accounted for in a tractable manner — ¢f. the discussion in
§2.11. The constitutive models assumed for the analyses reported in the previous two chapters were
of the perfectly-plastic type and, therefore, no strength inhomogeneities were permitted to arise in an
initially uniform seabed. As such, the assumptions underpinning the proposed force-resultant model were
matched to the assumptions underpinning the numerical analyses tasked with its calibration. While this
correspondence was convenient, it is inevitable that a real soil will not respond in a perfectly-plastic
manner but, rather, will undergo hardening/softening. Accordingly, it was deemed important to carry
out physical experiments to investigate the response of an on-bottom pipe, under plane strain conditions,
to combined V:H loading without the imposition of artificial constraints on the constitutive response of
the soil.

The experimental investigation was divided into the following two strands.

1. The first strand of tests were undertaken to provide experimental evidence for the existence of the
yield surface, and to deduce its size and shape in the V:H plane for various seabed surface geometries.
Specifically, it was of interest to assess the appropriateness of a yield surface given by a pair of
parabolas (as proposed in §3.7.1), and of dimensions specified by the pertinent values of the hardening
parameters. Data were also sought to assess the validity of the numerically-calibrated flow rule.

2. The second strand of the experimental investigation consisted of tests in which a constant vertical load
was applied to the pipe element while it was subjected to horizontal displacement-controlled movement
between predefined lateral displacement limits and, for brevity, will herein be termed ‘constant V’
tests. If the chosen vertical load is representative of a realistic value for the submerged pipe weight,

the load:displacement path followed in such a test is that which a pipe section might experience in
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the field. Accordingly, if the proposed force-resultant model can replicate the experimentally-derived
load:displacement paths to a reasonable degree of accuracy, then it is likely that the model functions

as desired.

5.2 Apparatus and procedures

5.2.1 Laboratory floor testing

In §2.6, arguments in support of the use of scale-model laboratory testing for the on-bottom pipe-
soil interaction problem were outlined. These arguments hinged upon the assumption that the mean
effective stress, p’, at full scale, is likely to be sufficiently low that ¢ is independent of p’. While it is
acknowledged that a more rigorous approach is to enforce stress similitude by carrying out scale model
testing in an elevated acceleration field using a centrifuge, it is worthwhile to comment briefly on some

of the advantages of laboratory floor scale-model testing which are relevant to this investigation.

1. Logging and control of experiments is easier on the laboratory floor and, where appropriate, can
be carried out with manual interjections. For example — as will be discussed in §5.2.6 — a simple,
manually-driven system was used in this investigation to log the seabed surface profile in an efficient
and non-intrusive manner.

2. On the laboratory floor, meticulous preparation of the test-bed can be carried to attain an initially
level surface. By contrast, owing to the radial acceleration field, the test-bed surface in a centrifuge is
likely to adopt a cylindrical profile at the extremities of the test-box (alternatively, if the upper layer
of soil is scraped away in flight to conveniently preserve a flat surface then, it should be acknowledged
that this corresponds to a curved surface in a parallel acceleration field [46]). Perhaps for other
geotechnical problems (e.g. foundation model testing), the attainment of a level test-bed is not
critical, however, for this problem, it is far more important owing to the need to accurately replicate
the evolution of the seabed surface with lateral displacement.

3. Using a centrifuge is expensive and, hence, a programme of experiments is usually meticulously
planned out beforehand to maximize the available testing time. For the experimental work reported
here, the sequence of tests was deduced in an iterative fashion, with the parameters of the next test
depending on those carried out previously. Accordingly, time was needed between tests to process the
obtained data and augment the testing rig’s control software, as appropriate.

4. The primary concern in the calibration of a pipe-soil force-resultant model is the replication of key
trends evident in experimental data. Whether the absolute values of the loads are in agreement with
field data is, perhaps, less significant than, for example, being able to reliably predict whether a
softening or hardening response should be expected for a particular loading path. After all, if the

validity of a model’s framework has been fully tested and validated (in the sense of replicating key
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F1G. 5.1: 3-DOF loading rig.

trends for a variety of different load paths), pertinent parameter values can be re-calibrated at a later

date, if necessary, to provide predictions in closer agreement with field data.

5.2.2 3-DOF loading rig

The experiments were carried out using the loading rig shown in Fig.5.1. It was commissioned by
Martin [34] and subsequently modified by Mangal [68] and Byrne [58]. The rig allows for independent
control of the vertical, horizontal and rotational displacement components in a single plane and its

operation is summarized in the following with reference to the figure.

Actuation systems

The rig’s vertical actuation system consists of: (i) the vertically mounted slide-way (LG-V), (ii) the
vertical sliding plate (VP), (iii) a set of four journal bearings (not shown), (iv) the vertically mounted
lead screw (LS-V), (v) the vertically aligned (and geared) stepper motor (SM-V) and (vi) the coupling
(C-V). LG-V is mounted from the rig’s main reaction frame and is aligned to the vertical. The four
bearings are mounted from VP and possess female vee-shaped grooves, which — when tightened to the
male vee-shaped edges of LG-V — constrain VP to slide up and down LG-V with minimal play. LS-V
is wound through a threaded block fixed to VP, and is driven by SM-V (via the coupling, C-V). SM-V
receives commands from a computer (via the stepper motor controller unit) such that VP can be lifted
up and down in an automated manner.

The rig’s horizontal actuation system consists of: (i) the horizontally mounted slide-way (LG-H),
(ii) the horizontal sliding plate (HP), (iii) a second set of journal bearings (JB-H), (iv) the horizontally
mounted lead screw (not shown), (v) the horizontal (geared) stepper motor (SM-H) and (vi) the coupling

(C-H). The principle of the horizontal actuation system’s operation is the same as the vertical system:
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the bearings fixed to HP allow it to slide along LG-H when the lead screw is driven by SM-H (via the
coupling, C-H). The rotational system is mounted from HP but since no rotations were prescribed in the
test programme reported subsequently — as is consistent with the assumptions inherent to the proposed
force-resultant model — no further details on its operation are appropriate here. Indeed, the connecting
arm holding the pipe element (PE) can be envisaged to be rigidly fixed to HP (if the flexibility of the rig

is neglected).

Test piece

The solid, steel pipe element test piece (PE) commissioned for this work was of 50mm diameter and
250mm length. A length to diameter ratio of 5:1 is typically considered sufficient to approximate plane
strain conditions in unconfined testing, cf. Vesi¢ [129]. Regarding scaling, a pipe of 50mm diameter is
approximately four times smaller than the lower end diameter of pipes used in the field. Hence, it is
noteworthy that any influence of scaling is likely to be small relative to that of an investigation carried

out under equivalent conditions on a typical offshore foundation, for example.

Displacement measurement

Two LVDTs (LVDT-V and LVDT-H) measure the displacements of the sliding plates, VP and HP.
LVDT-V (supplier: RDP Electronics of Wolverhampton, UK; part no: ACT600C; range: +150mm)
measures the displacement of VP relative to the rig’s reaction frame while LVDT-H measures the displa-
cement of HP relative to VP. Under the assumption that the rig is rigid, these measurements give the
displacement of PE (and given that the loads in the test are small, this assumption is reasonable). At
the outset of the work, the maximum horizontal travel distance afforded by the rig was approximately
50mm. Since the diameter of PE was 50mm, this travel distance was too low to enable testing involving
lateral displacement cycles of multiple diameter amplitude. Accordingly, the horizontally mounted linear
guide (LG-H) and LVDT-H were replaced by equivalent items capable of accommodating a greater hori-
zontal travel distance. The new linear guide is 625mm long and of identical cross-section to that of the
pre-existing slide; this allowed the new slide to be easily inserted into the pre-existing journal bearings
(indeed, the original and new slides were both supplied by HepcoMotion of Tiverton, UK). The new
LVDT was also supplied by RDP (part no: ACT4000C) and its travel distance is £100mm (although,
the total horizontal travel distance accommodated by the new assembly is slightly less than 200mm —
approximately, 195mm — since the horizontal mounting plate would otherwise foul against the stepper

motor casing).

Load measurement

Loads are measured by a ‘Cambridge’ type load cell (LC) which is mounted in the connecting arm

just above PE; full details of its operation and calibration are reported by Martin [34] and Byrne [58].
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The load cell has been re-calibrated several times since the rig was first commissioned and, each time,
the calibration constants were found to be within close proximity to the values determined initially.
Accordingly, a full calibration of the load cell was not carried out for this work but, rather, weights of
known value were suspended from the loading arm and compared to the electronically registered values

to confirm the calibration constants.

Transducer excitation and data acquisition

Byrne [58] carried out a series of improvements to the rig’s transducer excitation and data acquisi-
tion. Firstly, a RDP Modular 600 unit was commissioned to supply regulated excitation voltages to the
transducers and to amplify their output so as to obtain DC signals in the range: +10V. Secondly, a
16-bit analogue to digital data acquisition card was used to sample the output from the transducers and,
hence, provide a digital reading with 1 in 65536 precision. Thirdly, a MS.VisualBasic program was writ-
ten to automate data acquisition requests and then to download the sampled (digital) output. The same
MS.VisualBasic program was also tasked with the submission of requests to the stepper motors by passing
ASCII keywords, via an RS232 link, to the stepper motor controller unit. Specifically, instructions were
sent to the stepper motor controllers of SM-V and SM-H to request either movement by a certain number
of steps, or to commence movement at a constant step rate. The ability to request data acquisition from
the program tasked with submitting the stepper motor commands enabled tests to be carried out using
feedback control. This was advantageous in two respects; firstly, it enabled load-controlled tests to be
carried out and, secondly, it increased the precision with which displacement-controlled tests could be
undertaken (without feedback, displacement-controlled tests could only be carried out by prescribing a

sequence of steps through which each motor should move i.e. by using open-loop control).

5.2.3 High resolution displacement measurement

In several tests, it was necessary to measure the displacement of the pipe with greater reliability and
accuracy than that provided by the LVDTs mounted on the rig. Accordingly, the separate set of low
travel, high resolution LVDTS shown in Fig. 5.2 were used. These LVDTs were not mounted to the rig
but, instead, were fixed to a frame (S-LVDT-F) suspended from a crossbeam (SCB) bridging over the
test-bed such that their readings were independent of the flexibility of the rig.

This system of LVDTs was commissioned by Mangal [68] and uses triangulation to deduce the dis-
placement of PE from three LVDT readings. The triangulation calculation requires a method to fix the
horizontal datum. In previous work on offshore foundation scale-model testing, the frame was bolted to
SCB at the points labelled 1 and 2 in the figure such that the horizontal datum was fixed (providing SCB
was itself horizontal). For this investigation, displacement measurements using the small LVDTs were
required at selected intervals in tests for which the pipe was prescribed to undergo multiple diameter

lateral displacement. Accordingly, it was necessary to be able to connect/disconnect the small LVDT
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F1Gc. 5.2: Small set of LVDTs for high resolution displacement measurement.

frame to/from the loading rig without needing to unbolt and, subsequently, re-align the crossbeam, SCB.
Accordingly, a slot was machined along the length of SCB so that the LVDT assembly could slide laterally
into position, as required (previously, SCB only had holes at various lengthwise positions). By introdu-
cing the slot, the horizontal datum was no longer fixed (since the LVDT frame could now slide vertically
relative to SCB). This difficulty was readily overcome by recognizing that, in all tests, no rotation was
permitted (such that no commands were issued from within the MS.VisualBasic control program to the
stepper motor controller of SM-M). Hence, the points labelled 3 and 4 in the figure were always aligned
to the horizontal (providing the rig itself was horizontal). This change meant that the existing algorithm
to process the LVDT reading to deduce the resultant u and w needed to be augmented (although, for

brevity, details of this augmentation are not provided here).

5.2.4 Loading rig control

Bespoke algorithms were written to control the tests, although the code to request data acquisition
was copied from the existing programs developed by Byrne [58]. Feedback control was used in all tests.
For those tests carried out under displacement control, the current position of the pipe — as measured
by the LVDTs (either the set mounted on the rig or the small, auxiliary set) — was corrected to ensure
it remained on course to follow its prescribed trajectory. Likewise, for those tests carried out under
load control, the position of the pipe was corrected to ensure the load components measured by the
load cell were in close proximity to their demanded values (only vertical load control was used in the
tests discussed subsequently, in which case the pipe was subjected to penetration when the vertical load
reduced below its demanded value and uplift when it increased above it). The control algorithm was
of the PID (proportional-integral-differential) type, such that a correction to a load or displacement

component, ¢, was computed according to:
t

d
c= Kpe(t) +K1/e(7')d7'+KDae(t). (5.2.1)
——
Proportional to v

—_—— Differential
Integral
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F1G. 5.3: Grading curve of Leighton Buzzard DA30.

Coefficients of uniformity and curvature, C,, and C, 1.56, 0.81F

Do, D30, Dso, Deo, Dgg (mm) 0.32, 0.39, 0.46, 0.50, 0.71%
Minimum dry density, Ymin (kN/m?) 14.7

Maximum dry density, Ymax (kN/m?) 16.0

Critical state friction angle, ¢., (°) 34.3*

 as deduced via linear interpolation from the supplier’s data.
*assumed to be equal to that of Leighton Buzzard 14/25.
TABLE 5.1: Properties of Leighton Buzzard DA30.

Here, e (t) is the error at time, ¢, between the measured and demanded value of the controlled variable;
Kp, K;r and Kp are gain coefficients of the proportional, integral and differential terms respectively, tg
is the reference time at the start of the portion of the test under feedback control and 7 is a dummy
variable. Broadly-speaking, the proportional term serves to correct for any current error, the integral term
accounts for previous errors that have accumulated over the time interval, (¢ — tp), while the differential
term attempts to compensate for future errors. Both the integral and differential terms in the above
equation were evaluated numerically (using the Trapezium rule and a Newton difference quotient method,
respectively).

Several heuristic schemes have been proposed to tune PID control loops e.g. the commonly used
Ziegler—Nichols method [130]. A first step in these schemes is to set K; and Kp to zero, and then
determine the value of Kp at which the system first becomes unstable. However, this critical value of
Kp was found to be highly sensitive to both the rate of loading and the surface geometry of the test-
bed around the pipe. In particular, during trial testing in preparation for the constant V' tests, it was
found that changing the direction of lateral displacement placed a particularly onerous demand upon
the control loop such that the value of Kp to cause instability was significantly lower than at any other
point during the test. Accordingly, a more pragmatic approach, involving manual tuning was adopted
in which the differential term — which was found to have a destabilizing effect on the control loop —
was omitted (i.e. Kp was set to zero). Appropriate values of Kp and K; were then found on a largely
bespoke, trial-and-error basis (and for the constant V' tests, their values were adjusted during the test,

as appropriate).
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Fi1G. 5.4: Sand rainer.

5.2.5 Soil characteristics and test-bed preparation

The tests were carried out on dry Leighton Buzzard silica sand (grade: DA30). Its grading curve,
as inferred from data provided by the supplier, is shown in Fig.5.3; other properties are listed in Table
5.1. The primary motivation for this choice of sand grade was to obtain a ratio of grain size to test
piece diameter that was representative of that evident in the field (a Dgy value of 0.71mm implies that
90% of the sand grains are less than 1.42% of the 50mm pipe diameter). The sand was also to be
used for a separate (though, related) investigation into failure mechanisms corresponding to the plane
strain movement of an on-bottom pipe element, as discussed further in §5.2.8. Accordingly, the naturally
occurring multi-coloured grains of Leighton Buzzard DA30 were beneficial in that they provided sufficient
contrast for PIV analysis (such that the inclusion of foreign particles was not needed).

Due to time limitations, a laboratory testing programme to determine the internal friction angle at
a variety of densities was not carried out. Instead, the correlations proposed by Bolton [43] were used to
estimate the internal friction and dilation angles from the relative density of each test-bed (as discussed
in §5.2.7). However, these correlations require knowledge of the critical state friction angle, ¢.,. It was
deemed sufficient to posit that the critical state friction angle of Leighton Buzzard DA30 is the same as
that of Leighton Buzzard D14/25, which was determined by Schnaid [131] to be 34.3°.

Testing was undertaken in a tank of 200mm internal depth and square plan of 1100mm side length.
A sand rainer was commissioned with the intention of preparing an homogeneous test-bed. Fig.5.4 is a
photograph of the rainer and the supporting assembly. SR-H is the hopper (manufactured from sheet
steel and various supporting angle sections), which rests inside SR-C, a rectangular plan cradle (also made
from steel box and angle sections). Bolted to the cradle are a pair of bearings which roll within the pair
of 1750mm long, parallel guide rails, SR-GR (the bearings and guide rails were supplied by IDAMotion
of Bedford, UK). A stepper motor fixed to the cradle was used to drive a pinion (15mm PCD, 1.0 MOD)
along the rack, SR-R. A MS.VisualBasic program was written to submit commands to the stepper motor
via the same controller unit used to control 3-DOF rig’s vertical motor, SM-V. The hopper contains a

thin-slit at its base, the aperture of which was adjusted to attain an appropriate flow rate (the lower the
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FiG. 5.5: Density measurement pots.
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Fi1G. 5.6: Measured variation of density with depth.

aperture lower, the lower the flow rate and, hence, the lower the relative density). The hopper was driven
back and forth until a sufficient volume of sand had been deposited in the test tank (TT) — typically,
8-10 cycles were required. No mechanism was used to adjust the vertical position of the sand rainer to
maintain a constant drop height and, hence, as sand accumulated within the test-bed, the drop height
reduced. This was expected to give rise to an increasing density profile with depth. Unfortunately,
due to the unexpectedly strong influence of boundary effects along the hopper’s end walls, the flow rate
through the central portion of the slit was greater than at either end. While this was mitigated, to some
extent, by decreasing the slit width over the central portion of the hopper, an initially level test-bed was
inevitably not attained. This was rectified, without densifying the sample, by using vacuum suction to
remove the excess sand along the tank’s edges.

Density measurements were made using the sample pots (SP) shown in Fig.5.5. The square internal
area of each pot had a side length 38.1mm while the internal height was 33.65mm. Five sample pots were
positioned in each test-bed. One was positioned on the base of the tank while the other four rested on
plinths (SPP) such that the distance from the tank’s base to the mid-point of the internal depth of the
five pots were 20mm, 60mm, 100mm, 140mm and 180mm. Arranging the pots in this manner allowed
the variation of density with depth to be recorded.

Three test-beds were prepared to carry out the tests discussed in §5.3 and §5.4. Test VL, a dedicated
vertical loading test was carried out in Tank 1 for which no density measurements were recorded (although
the sample preparation was such that the density was expected to be broadly similar to that of the other

tanks). The remainder of tests were carried out in Tanks 2 and 3 (four tests per tank), for which Fig. 5.6
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L & e ’
Fic. 5.7: Optical displacement transducer and supporting apparatus.

contains plots showing the variation of absolute and relative density with depth. It is of interest to
note that Bienen et al. [128] achieved an average relative density of just 5% (substantially less than that
obtained in this investigation) when placing a coarser grade of Leighton Buzzard sand by hand, although
Jones [132] achieved an average relative density of 37% (commensurate with the values obtained in this

investigation) when also using Leighton Buzzard DA30.

5.2.6 Test-bed surface measurement

The proposed force-resultant model places a strong emphasis on the influence exerted by the seabed
surface profile on the size and shape of the yield surface in V:H space. Accordingly, a procedure was
required to log the test-bed surface in an efficient and non-intrusive manner. The system that was
developed to carry out these measurements is shown in Fig.5.7. An optical sensor (OS), manufactured
by Sharp (part no.: GP2D120; supplied by RS components of Corby, UK), was mounted from a carrier
(OS-C). OS measures the distance of a reflective object placed within a range of 300mm. The carrier,
OS-C, was suspended from a cross-beam (OS-CB) which was capable of sliding along the guide rail
(OS-GR) in the direction perpendicular to the cross-section of the pipe. Output from OS was logged in
the same manner as the other transducers i.e. an excitation voltage in the range +£4.5V (the maximum
range specified by the manufacturer) was supplied from a dedicated channel of the RDP Modular 600
unit and the sampled output voltage signal was subsequently downloaded from the data acquisition card.
A further LVDT (OS-LVDT) was connected via a coupling to OS-CB, such that, by logging the outputs
of OS and OS-LVDT simultaneously, the test-bed surface profile in the plane normal to the cross section
of the pipe was recorded.

Calls to log OS and OS-LVDT were requested by the same MS.VisualBasic program used to control
the loading rig. This allowed a test to be paused at an intermittent point within a displacement-controlled
test and, subsequently, re-started following the seabed surface scan.! The MS.VisualBasic program was
augmented to allow the processed outputs from OS and OS-LVDT to be written to the same text output
file as the other transducers (the LVDTs and load cell readings). A GUI was also written to submit

requests to start and stop the logging of these two transducers and to display a real-time plot of their

'For load-controlled tests, stopping the test was not viable since the drop-off in load incurred while the pipe
was stationary placed a prohibitive demand on the control algorithm on re-starting the test.
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F1G. 5.8: Optical displacement transducer calibration.

output. Typically, the optical transducer was pushed back and forth several times for each scan, and an
average of the output recorded from each pass of the transducer was then taken.

OS was calibrated against the 3-DOF rig’s vertical LVDT (LVDT-V). It was deemed important to use
Leighton Buzzard DA30 sand as the reflective medium for the calibration of OS in case the relationship
between output voltage and separation distance was influenced by the optical properties of the reflective
medium. Calibration was undertaken by clamping OS to the base of the rig’s loading arm, which was
then lowered towards a flat, level sample of the sand. As it was lowered, the output voltages of OS and
LVDT-V were logged simultaneously, from which the calibration curve shown in Fig. 5.8a was constructed.
Vernier caliper measurements were taken as a check of the LVDT-V’s output and these measurements are
also included on the plot. Fig.5.8a shows that the relationship between output voltage and separation
distance is markedly non-linear. Indeed, the relationship is monotonic only for separation distances
in excess of 42.5mm. As such, the device was always operated with a separation distance above this
threshold. Enlargement A and Enlargement B also reveal that the device’s resolution decreases with
increasing separation distance (the step-changes in voltage arise because of the inherent digital nature of
the device; further details on its operation are provided in the literature supplied by the manufacturer).
Accordingly, OS was not mounted further than approximately 100mm from the test-bed at any point
during a scan. An eighth-order polynomial was taken as an analytical expression to fit the relationship

between the output voltage and separation distance. This polynomial is superimposed on the plot in
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Fig.5.8a. Fig.5.8b is a plot of the error — defined as the difference between the measured displacement
and that predicted by the polynomial for the same voltage. The peak absolute error over a separation

distance range of 42.5-100mm was 0.95mm or 0.019D; this was deemed acceptable.

5.2.7 Friction angle, ¢’

In order to draw comparisons between the experimentally-derived data and the numerically-derived
results, it is necessary to first deduce a representative value of the internal friction angle, ¢, and the
dilation angle, 1, of each test-bed (as well as the pipe-soil interface friction angle, §). With an estimate
of these parameters, the associated values of the hardening parameters can be obtained from Table 3.4
(pages 108-109) for a given pair of values of #; and t5, and, then, scaled by the appropriate factor so as
to give the relevant non-associated values.

At low stress levels, Bolton’s [43] expressions for ¢’ in plane strain reduce to:

L +5(Ip—1)  for Ip >0.2
¢ = (5.2.2)

/cs for I D < 0.2.
On taking the representative density of each test-bed as the average over a depth of 2D below the surface,
the relative densities of tanks 2 and 3 were, respectively, 0.32 and 0.25. From the above relationship,

this gives ¢ as 37.3° and 35.6° for tanks 2 and 3 respectively. Also, since:
¢ = ¢y +0.8¢ (2.6.3 bis.,)

the values of the dilation angle, v, for test-beds 2 and 3, are 3.8° and 1.6° respectively i.e. all tests were
close to critical state (although marginally on the ‘dry side of critical’).

Although the numerically-derived results were applicable to a ¢’ = 30° and the experimental work was
completed with a representative ¢’ of 34.3°, there are still worthwhile comparisons to be made between
the two. Firstly, the associated values of the hardening parameters were deduced for the experimentally-
derived values of ¢’ (i.e. 37.3° and 35.6°) via interpolation within Table 3.4. Then, for the experimentally-
derived ¢/, the appropriate values of the non-association knock-down parameters, ¢; and (o, were deduced
from linear interpolation between the values of {; and (5 deduced for ¢’ = 30° and ¢’ = 38° (as presented
and discussed in §4.6.1). This implies that for ¢ = 35.6°, for example, the value of ¢ for which the
numerically-calibrated parameters are sought is 5.6°, rather than 1.6° i.e. the numerically-calibrated
parameters correspond to the case of a higher ¢ than was evident experimentally. This is a consequence
of not matching ¢., between the experiments and the numerical calibration of the model. Despite this,
broad agreement between the trends in the experimental data and the numerically-calibrated results
was anticipated. In all cases, the interface friction angle, §, was taken as 0.535¢’, as recommended by

Potyondy [84] for a smooth steel/sand interface (i.e. 20.0° and 19.1° for test-beds 2 and 3 respectively).
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Fic. 5.9: Apparatus for particle image velocimetry (PIV) tests, from Jones [132].

5.2.8 Particle image velocimetry (PIV)

Jones [132] reports details of an experimental research programme — carried out in conjunction with
this investigation (and also using the 3-DOF rig) — to deduce the failure mechanisms during multiple pipe
diameter, lateral displacement using particle image velocimetry (PIV). The discussion on the constant
V' tests — provided in §5.4.1 — will make reference to his investigation and, hence, the following overview
of its salient features is insightful.

Fig.5.9 depicts Jones’ experimental set-up. The apparatus includes a 350mm x 600mm x 96mm
(WxHxD), perspex-fronted dural (aluminium alloy) test tank, a steel tubular frame — upon which the
3-DOF rig was mounted — and a separate pipe test piece (also of 50mm diameter). The test piece was
designed so that, when inserted between the perspex front panel and the dural (aluminium alloy) back-
plate of the test tank, it could move with minimal frictional resistance whilst remaining in contact with
the perspex. As shown in the figure, this objective was realized by fixing foam layers to each end of the
pipe (so as to provide some axial compliance) and, in turn, fixing PTFE end plates (of 2.5mm thickness)
to the exposed surface of each foam layer (so as to provide a contact surface with a low coefficient of
static friction). The test tank was filled with Leighton Buzzard DA30 sand and, under the actuation of
the 3-DOF rig, the pipe segment was prescribed to follow a pre-programmed displacement history. The
confining effect of the perspex front panel and the dural back plate ensured that plane strain conditions
were enforced.

In isolation, the PIV test set-up could not be used to carry out load-controlled tests since it was not
possible to deduce reliably the proportion of the load — as measured by the load cell — due to friction

between the tank and the PTFE end-plates. Accordingly, the following two-stage approach was used.

1. Stage 1 consisted of an unconfined test i.e. using the 250mm long pipe element in the open test tank
shown in Fig.5.4. In this test, feedback control — as described in §5.2.4 — could be used to maintain
a load component (V or H) within close proximity to its demanded value.

2. Stage 2 consisted of a confined test in the PIV test tank. This test was carried out under displacement
control, with the displacements recorded from the unconfined test taken as the test’s input. Since the

same trajectory was then followed in both tests, the failure mechanisms were expected to be similar.
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Test Objective(s) Name Tank § (page)
(i) To obtain the vertical load:displacement (V:w) curve
. corresponding to the initial penetration of the pipe
Vertical . . 5.3.1
loadi element into a level and (nominally) homogeneous VL 1 (182)
oadin
& sample (i.e. to obtain the virgin loading curve). (ii) To
investigate the elastic unload/reload response.
To generate a V:H load path which tracks within close 5.3.9
Swipe proximity to the instance of the yield surface following SW1, SW2 2 (185)
initial penetration.
To generate a V:H load path which tracks within close 533
Circular loop | proximity to the instance of the yield surface following CL1, CL2 2,3 o
. . (192)
large-amplitude lateral displacement.
Displacement-| To determine a subset of the (V, H) yield points on the 534
controlled | instance of the yield surface following large-amplitude DCP 2 (203)
probe lateral displacement.
To record the evolution of w and H for a test in which
Constant . L 5.4.1
. the pipe element was cycled between predefined u limits | CV1, CV2 3
vertical load . (206)
and subjected to a constant value of V.

TABLE 5.2: Test programme.

Regarding image acquisition, the camera was positioned with its lens parallel to, and 500mm from, the
perspex front of the test-tank. A lamp was required to provide the appropriate illumination. After
the accumulation of every 10mm of lateral displacement, 10 images were captured using the camera’s
self-timer mode, with a 1 second pause between each image. The PIV analysis itself was carried out

using the MATLAB module, GeoPIV; full details of its operation are provided by White et al. [133].

5.3 Results of tests to determine the V:H yield surface

Table 5.2 provides a summary of the salient features of the tests discussed in the remainder of this
chapter. The focus of this section is those tests which were carried out to determine the size and shape
of the instance of the V:H yield surface following a given history of plastic displacement (and also the

distribution of flow vectors over the yield surface).

5.3.1 Vertical loading

Virgin loading
Fig.5.10 is a plot of the vertical load:displacement (V:w) response for Test VL — a dedicated vertical
loading test in which the pipe was penetrated to a depth beyond 1D at a rate of 0.1mm/s. The plot

suggests that a linear relationship of the form:
V = kyw (2.7.6 bis.)

would suffice to characterize the virgin vertical loading response, where a suitable value of the plastic

stiffness, ky, is 41.2kPa. This finding is consistent with that of Zhang [37] (as discussed in §2.7.2) and
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F1G. 5.10: Test VL — vertical load:displacement curve and surface profiles.

also the results of the ‘wished-in-place’ numerical analyses reported in Chapter 3 (see the approximately
linear plots in Fig.3.21).

Fig.5.11 shows the virgin V:w loading response for all eight tests listed in Table 5.2. For clarity, the
V:w responses for events other than vertical penetration (e.g. swipe/probe events) have been excluded.
Like Test VL, this plot suggests that the variation of V' with w was approximately linear in each test.
However, the gradients of the virgin loading curves differ somewhat. For example, the highest stiffness
(recorded in Test DCP) was approximately 54.3kPa whereas the lowest stiffness (recorded in Test SW2)
was approximately 35.5kPa. The variation is likely to be due to the different densities of Tanks 2 and 3
and also differences between the densities of separate sites within the same tank. Indeed, it is noticeable
that, in general, the plastic vertical stiffness for those tests carried out in Tank 2 is higher than for those
tests carried out in Tank 3; this is consistent with the observation that Tank 2 was denser than Tank 3.

In Chapter 4, a procedure was described to determine the hardening parameters, V;, Hi, Vo and
Hy, from the geometric parameters, t; and ts. If heave during vertical penetration is neglected, then
the value of t; (= t2) is the same as the vertical penetration, w. Hence, by looking up the numerically-
calibrated values of V; (= Va) for various ¢ (= t2), a vertical penetration curve based on the results of
the numerical analyses is readily derived. Two such curves, one for each of the test-beds, are included
on the plot in Fig.5.11. In general, the agreement between the numerically-calibrated and experimental
load:displacement curves is good, although the responses in Tests SW2 and CL2 are less stiff than those

deduced from the results of the numerical analyses.

Unload/reload response

In Test VL, following the first 10mm (0.2D) of penetration, the pipe was lifted upward at a rate
of 0.00lmm/s (the slowest rate at which the vertically orientated stepper motor, SM-V, could operate).
Once the vertical load reduced to zero, penetration recommenced. The V:w response during this portion

of the test is enlarged in the inset of the figure. The stiffness on unloading (A—B) is approximately
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F1G. 5.11: Vertical load:displacement curves for all tests listed in Table 5.2.

3300kPa, while the stiffness on reloading is substantially lower — approximately 682kPa. As discussed in
§2.6, an estimate to the sand’s shear modulus, G, is required to generalise the measured elastic stiffness
to a seabed of arbitrary stiffness and a pipe of arbitrary diameter. As set out in §2.6, the relation for G

proposed by Wroth et al. [49] leads to the following expression:

G = Gp{™™ <a, + #)n (v'D)". (5.3.1)
Taking G = 400, n = 0.5, p, = 101.3kPa, o/ = 15.1kN/m® D = 0.05m, w/p = 0.2 (hence, o, = 0.808
and [, = 0.788) and V, = 0.44 (the value of V at w/p = 0.2 on the virgin loading curve in Fig. 5.10),
G is 13.7MPa. From Eq.2.6.6, this implies that the dimensionless vertical elastic stiffness factor, ky,
takes a value between 0.050 (for reloading) and 0.241 (for unloading). This wide range of values of kyr, is

characteristic of the fact that, on unloading/reloading, sand does not respond in a purely elastic manner

but, rather, some plasticity occurs during all but the smallest amplitude vertical displacement cycles.

Failure mechanism

Finally, it is useful to compare the observed field of velocity vectors during a vertical loading test
with those deduced from the numerical analyses presented in the preceding chapters. Fig.5.12 shows
the velocity field for a shallowly-embedded pipe under vertical loading. This figure shows a predomi-
nantly punching shear failure mode whereby vertical penetration is accommodated by compression of
the underlying soil (although some flow vectors directed towards the free surfaces). This observation
is verified by the plots on the right hand side of Fig.5.10 which reveal that negligible heave occurred
during the first 30mm (3D/5) of penetration. As discussed by Vesi¢ [129], with regard to the loading of
shallow foundations, there is a substantial body of experimental evidence which suggests that a ‘local
shear’ failure mode is to be expected for a loose sand. In contrast, the numerical analyses presented in
the preceding chapters show failure modes which, in the terminology coined by Vesi¢, are of the ‘general
shear’ mode. General shear failure is accompanied by slip surfaces which commence from a point on the

perimeter of the pipe and terminate at a point on the free surface. Clearly, the discrepancy relates to
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Fic. 5.12: Typical velocity field, as obtained from a PIV analysis, during vertical penetration.

the idealized constitutive model used in the numerical work, perhaps due to the use of a perfectly plastic

yield criterion or the assumption of rigidity (or a very stiff elastic response) prior to yield.

5.3.2 Small lateral displacement: swipe tests (Tests SW1 and SW2)

Theory

As discussed in Chapter 2, several research programmes have been carried out with the aim of
developing a plasticity model, akin to the one proposed here, to predict the resultant displacement of
a surface foundation due to a set of prescribed loads. The data needed to calibrate these models were
typically obtained through experimental work, the success of which owed much to the swipe test, which
was discussed in Chapter 4, in the context of the numerical analyses (for which the soil was assumed
as a perfectly-plastic material). However, since real soils inevitably harden/soften. The following re-
assessment of the swipe test is insightful.

As noted above, it is convenient to characterize the virgin vertical loading response by a linear

relationship, namely Eq.2.7.6. By using the elastic vertical load:displacement relationship:
OV = kywowe, (5.3.2)
together with the elastic-plastic decomposition law:
dw = dwe + dwy, (5.3.3)

it is a straightforward task to obtain the following relationship between 6V and dw,, as appropriate to

virgin vertical loading:

ka

As discussed in §2.7, for small amplitude lateral displacement about the as-laid position, it is appropriate
to assume that the yield surface grows in an approximately self-similar manner with the vertical com-
ponent of plastic displacement, w,. Also, for vertical penetration, the hardening parameters, V; = V3,
correspond to the peak vertical load (and they, therefore, fulfil the same role as Vj in the models of Zhang
et al. [39] and Hodder & Cassidy [41]). Accordingly, by replacing V' in the above equation by Vi = V3,

the incremental form of the hardening law for small-amplitude lateral displacement can be characterized
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as:

ka

During a swipe test, the elastic and plastic components of vertical displacement are constrained to be
equal and opposite: dw. = dwy, such that, via the use of the elasticity relation (Eq.5.3.2), the following
equation relating an incremental change in V to 6V; = 0V5 is readily obtained:

k

—2 __)§V. 5.3.6
k\/w - kp) ( )

oVp =06V = — <
This relationship implies that, providing ky, > Ep, 0Vh = dV4 is small relative to 6V. Accordingly, the
proximity with which a swipe test load path tracks the yield surface depends on the ratio, kvw/k,; the
higher its value, the closer the tracking. From the test shown in Fig.5.10, this ratio is approximately 80,

and so the yield surface should be closely tracked during the swipe test.

Test SW1

The results of the first swipe test which will be discussed, Test SW1, are shown in Fig.5.13a. For
this test, penetration was carried out at a rate of 0.025mm/s, using feedback control to adjust the pipe’s
horizontal position so as to ensure virgin loading occurred along the V axis (see the paths labelled, 0—A,
on the plots). Penetration was instructed to cease after 11mm of vertical displacement (at A) so as
to allow the small set of LVDTs to be connected to the rig’s loading arm. Vertical displacement was
then instructed to resume at the same rate, until the desired penetration depth of 12.5mm (P/4) was
reached (at C). Horizontal displacement then commenced at a constant rate of 0.005mm/s (C—D), with
feedback control used to correct the vertical elevation of the pipe in accordance with the high resolution
measurements from the small set of LVDTs.

The plot in V:H space in the upper left quadrant of Fig.5.13a shows that, as intended, the load
path remained within close proximity to the V' axis during vertical penetration (0—A). However, it is
noticeable that 2.1mm (0.042D) of horizontal displacement occurred from 0—A. Although this response
might relate to some lack of homogeneity in the initial test bed, it should also be borne in mind that,
in the numerical work reported in the previous two chapters (for which loading was carried out on a
perfectly plastic, spatially homogeneous seabed), the direction of plastic displacement during vertical
loading was not found to be unique. This demonstrates that, even under highly idealized conditions,
it is theoretically possible for vertical penetration to occur with horizontal displacement, despite the
absence of horizontal loading. In any case, once vertical penetration ceased at A (to allow the small
set of LVDTs to be connected to the loading arm), V reduced by approximately 0.2N/mm while H
also increased marginally (A—B). This response suggests that there was some gradual reduction in the

stresses within the soil mass beneath the pipe, perhaps arising from some minor slip within the testing
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(a) Results of a normally loaded swipe test following penetration to 12.5mm (0.25D).
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(b) Load path of Test SW1 and the corresponding numerically-calibrated yield surface.
Fic. 5.13: Test SW1 results.

rig.2 On reloading (after the small set of LVDTs had been connected to the rig’s loading arm), the load
point returned to the apex of the yield surface (at C). During the swipe portion of the test itself (C—D),
the plot in the upper right quadrant of the figure shows a peak in u:H space. This is qualitatively similar
to the response obtained numerically from the Abaqus swipe tests assuming the non-associated flow rule;
cf. the results of Test SW8 in Fig.4.10a. The plots in V:H and V:w spaces shows that the vertical load
reduced during the swipe test, with the V:H load path seen to follow a curve similar to those presented
in Chapter 4 (and also similar to those deduced experimentally by Zhang [37]).

Based on the theory set out above, the V:H load path from C—D was expected to plot within close
proximity to the instance of the yield surface corresponding to vertical penetration to D/4. Therefore, it is
of interest to compare Test SW1’s load path with the prediction of the instance of the yield surface made
by the numerically-calibrated force-resultant model. This comparison is provided in Fig.5.13b, where a

plot of yield surface in V:H space corresponding to the parameter values: t; = {5 = 0.25, ¢/ = 37.3°,

2Tf the stiffness in unloading is taken as 3300kPa, then just 0.06mm of slip-induced movement would be
required to bring about the observed 0.2N/mm reduction in V.
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v = 15.1kN/m3 and D = 50mm is shown, together with Test SW1’s load path. This plot reveals that,
in general, the discrepancy between the numerically-calibrated yield surface and the experimental load
path is not substantial; the peak vertical load predicted by the numerical results is 19.8% lower than
that implied by the experimental results, while the peak horizontal load is under-predicted by 13.4%.
Possible reasons for the discrepancy include: (i) the idealizations underpinning the procedure used to
estimate ¢’ and ¢, (ii) the various simplifying assumptions used in the numerical work (e.g. the choice
of a perfectly-plastic, Mohr-Coulomb constitutive model, and the use of a ‘wished-in-place’ analysis,
which neglects the influence of strength inhomogeneities and heave following vertical penetration), and
(iii) the fact that Test SW1’s load path will, itself, diverge slightly from the actual yield surface since
some plastic vertical displacement occurs during a swipe. Despite the discrepancy, the reasonably close
proximity of the numerically-calibrated yield surface to the experimentally-derived, swipe test load path
provides confidence in the choice of yield function, and the validity of the numerical calibration of the
hardening laws.

The results of Test SW1 are also valuable in that they allow the validity of the proposed force-
resultant flow rule to be assessed. The circular data-markers in Fig.5.13b — which denote the loads and
displacements recorded after each 0.lmm increment of horizontal displacement applied during the swipe
— are seen to plot within closer proximity to each other at the swipe of the test than at its start. This
suggests that, by the end of the swipe, the parallel point was reached; accordingly, a flow vector parallel
to the H axis has been added to the plot at the final (V, H) load point recorded during the test. Also
shown on the plot in Fig. 5.13b is the instance of the plastic potential which passes through the parallel
point of the predicted yield surface, together with the flow vector at this point. The predicted and
experimentally-inferred flow vectors are seen to be reasonably close to one another, which suggests that
the data obtained from the numerical analyses reported in Chapter 4 were appropriate for the numerical
calibration of the force-resultant model (thus confirming the necessity to calibrate a non-associated flow

rule).

Test SW2

Fig.5.14a shows the results of a second swipe test, Test SW2. In this test, the pipe was initially
penetrated to a depth of 6.25mm (P/8) and, then, translated horizontally using the same procedures as
those used in Test SW1 (as described above). Given that this swipe was carried out at a rather low
penetration depth, it was deemed reasonable to assume that any change to the seabed’s load carrying
capacity brought about by the first swipe could be overridden by subjecting the pipe to further penetra-
tion. Accordingly, immediately following the completion of the first swipe, penetration was instructed to

resume until the pipe was located 25mm (DP/2) below the initial test-bed surface. Then, a second swipe
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(c) Load path of Test SW2 (2nd swipe) and the corresponding numerically-calibrated yield surface.
Fi1G. 5.14: Test SW2 results.
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FiG. 5.15: Schematic diagram of a u:0 loop test, for constant V', as applicable to the calibration of a force-
resultant offshore foundation model.

test was carried out (this time involving leftward movement), so as to obtain a load path expected to plot
within close proximity to the instance of the yield surface corresponding to the new penetration depth.

A comparison between Figs 5.13a and 5.14a reveals that the results of Test SW2 are qualitatively
similar to those of Test SW1. In particular, the V:H load paths for the swipe portions of the test are seen
to be of similar shape to the one obtained in Test SW1 (albeit, the curve in V:H space for the second
swipe in Test SW2 is confined to the positive V', negative H quadrant of the V:H plane — rather than the
positive V', positive H quadrant — owing to the fact that the pipe was displaced leftward in the second
swipe, not rightward). From Fig.5.14b, it is apparent that the V:H load path obtained from the first
swipe (undertaken following penetration to 6.25mm) plots within close proximity to the corresponding
instance of the numerically-calibrated yield surface (as given by the hardening parameters deduced from
the look-up table for f; = £ = 0.125, ¢/ = 37.3°, 4/ = 15.1kN/m® and D = 50mm). Like in Test SW1,
the agreement between the experimental load path and the predicted yield surface is seen to increase as
V reduces (the worst agreement is around the apex of the yield surface, where the value of V is 84.7%
of the value of V' at the start of swipe). The circular data-markers — which again denote the loads and
displacements recorded after every 0.1lmm of horizontal displacement applied during the swipes — are,
like in Test SW1, seen to plot within closer proximity to each other at the end of swipe than at its start.
This again suggests the attainment of a parallel point and, accordingly, at the final (V, H) load point of
the swipe, a flow vector parallel to the H is shown. Also included on the plot in Fig. 5.14b is the plastic
potential passing through the predicted parallel point, together with the corresponding flow vector. The
agreement between the model’s prediction of the parallel point, and the experimental data is seen to be
very good, suggesting that, for this penetration depth, the model’s prediction as to whether penetration
or uplift accompanies lateral displacement is likely to agree with the experimental data.

Fig.5.14c shows the V:H load path for the second swipe (undertaken following penetration to 25mm)
together with the numerically-calibrated instance of the yield surface corresponding to the parameters:
t1 =1ty = 0.50, ¢' = 37.3°, 4 = 15.1kN/m® and D = 50mm. The scale of the V axis of this plot has been

set to be the same as the one in Fig.5.14b, so as to show clearly the increase in the yield surface size
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FiG. 5.16: Test CL1: test record.

(as suggested by the swipe test load path, as well as the numerically-calibrated yield surface) brought
about by penetration. The discrepancy between the numerically-calibrated yield surface and the swipe
test load path is slightly greater for this swipe than for the two discussed previously (the value of V at
the apex of the yield surface is just 73.4% of the peak V recorded at the start of the swipe). Also, unlike
the previous two swipes, it is noticeable that the circular data-markers do not coalesce towards the end
of the test, suggesting that the parallel point was not reached. Accordingly, it is not troublesome that
the model’s prediction of the location of the parallel point (shown by the arrow directed parallel to the H
axis, normal to the proposed plastic potential) is some distance from the final load point recorded during
the swipe. Indeed, had the swipe been continued further, it is likely that the final (V, H) load point
would have been located closer to the origin (as indicated by the white-headed arrow), thus indicating

further agreement between the model’s prediction and the experimental data.

Summary

In general, the trends deduced from the swipe tests have been found to be largely consistent with the
numerically-calibrated components of the proposed force-resultant model. In particular, each V:H load

path corresponding to a swipe portion of Test SW1 and SW2 has been found to be of similar shape to the
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FiGg. 5.17: Test CL2: test record.

corresponding instance of the numerically-calibrated yield surface (although, the yield surface implied
by the experimental load path was found to be of larger size than its numerically-derived counterpart).
Furthermore, the model’s prediction of the location of the parallel point has been found to be largely
consistent with the experimental data. These findings suggest that it is likely that the numerically-
calibrated force-resultant model will be able to adequately predict the load:displacement response of the

pipe during penetration and at the onset of lateral displacement.

5.3.3 Large lateral displacement: loop tests (Tests CL1 and CL2)

In this section, the results of two circular looping tests, CL1 and CL2, are presented and discussed.
These tests were primarily undertaken to generate the results needed for comparisons to be drawn with
the numerically-calibrated instances of the V:H yield surface (and the corresponding distributions of
flow vectors) following large-amplitude, lateral displacement, as applicable to a pipe undergoing lateral

buckling /bending.
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Motivation and test records

Martin [34] carried out tests on clay in which a model spud-can foundation was initially penetrated
to a target vertical load, and then unloaded to reach a chosen overloading ratio. The model foundation
was then prescribed to follow a circular displacement path in w:0 space with the intention of obtaining
a load path which tracks close to a H':M' cross-section through the V':H':M’ yield surface (where V’,
H', and M’ are the total horizontal and moment loads applied to the foundation); see the schematic
diagram in Fig.5.15. As for the swipe tests reported above, the success of these loop tests hinged upon
the premise that the vertical plastic displacement, w,, governs hardening alone, such that, by holding
the total vertical penetration constant, significant hardening was not permitted, and hence a loop of
in u:0 space was expected to generate a H':M’ load path which tracks close to the current instance of
the yield surface. Following lateral displacement of multiple diameter amplitude, similar loop tests were
also undertaken here. However, since the objective was to obtain data to deduce an instance of the
yield surface in V:H space (rather than H:M space), u:w loops were carried out (rather than w:6 ones).
Owing primarily to the fact that the vertical penetration was prescribed, it was expected that V:H load
paths obtained from wu:w loops were expected to undergo continual hardening. Accordingly, in each test,
several loops of increasing radius were carried out so as to deduce, by comparison, those portions of the
loops in which hardening had occurred, and hence allow inferences to be drawn regarding the size and
shape of the instance of the V:H yield surface for the current soil surface geometry.

Figs 5.16 and 5.17 respectively show time histories of the loads and displacements recorded in Tests
CL1 and CL2. The plots of w and u show the outputs from LVDT-V and LVDT-H, while the plots of
Aw and Awu show the outputs from the small set of LVDTs. The small set of LVDTs were only used
during particular events within the tests, and were re-zeroed prior to their use each time. Accordingly,
their output is a measure of the displacement of the pipe relative to the start of the portion of the test
in which they were used. As shown in the figures, from 0—A (in both tests), the pipe was displaced
vertically to a target penetration depth of 12.5mm (P/4). Then, from A—D, it was displaced laterally by
100mm (2D) at constant elevation. Following this, from D—T, the pipe was prescribed to undergo eight
circular loops of increasing radius. The circular loop portions of each test are labelled on the figure as
E—F, F—G, G—=H, H—I, I—-J, J=K, K—L and L—M. In Test CL1, anti-clockwise circular loops were
carried out, each commencing with horizontal displacement to the move the pipe away from the berm.
The (intended) radii of these loops were: 0.2mm, 0.4mm, 0.6mm, 0.8mm, 1.0mm, 1.4mm, 1.8mm and
2.4mm. In Test CL2, clockwise circular loops were also carried out, but this time the initial movement
was vertically downward. The (intended) radii of these loops were: 0.lmm, 0.2mm, 0.4mm, 0.6mm,
0.8mm, 1.2mm, 1.6mm and 2.4mm. Following each loop in both tests, the pipe was moved horizontally
by a small amount (3-5mm) with the intention of returning the (V, H) load point to approximately the

same position in V:H space as before the loops were carried out.
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Fic. 5.19: Soil surface profiles in Tests CL1 and CL2.
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Figs 5.18a and 5.18b respectively show the results of Tests CL1 and CL2 prior to the looping portions
of both tests. The plots in V:H space show that the results from 0—A—B—C are qualitatively similar
to those of the swipe tests discussed above. On continuing lateral displacement to point D, 100mm from
the embedment site, the u:H plots show that the horizontal load increased in both tests. The V:H plots
show that there was minimal change in the vertical load. Fig.5.19 shows the recorded soil surfaces at
the start and end of the circular looping portions of Tests CLL1 and CL2. These figures reveal that the
increase in the size of the berm brought about by the displacement during, and between, the loops was
not substantial.

For each of the loops carried out in Test CL1, Fig.5.20 (pages 196-197) contains eight plots — one
for each loop — showing the obtained results in the spaces: V:H, V:w, w:H and w:w. Similarly, Fig.5.21
(pages 198-199) contains plots showing the equivalent data recorded in Test CL2. The w:w plots in
Fig.5.20 show that, while an approximately circular displacement path was followed for all loops in Test
CL1, the circles are offset about the w axis (with the peak horizontal displacement towards the berm
greater than the peak horizontal displacement away from the berm). Similarly, for the three smaller loops
in Test CL2, the w:w plots in Fig.5.21 show that the circular loops are offset about the u axis (with the
peak displacement upward greater than the peak displacement downward). The failure to follow exact
circular displacement paths was not, however, deemed detrimental — after all, circular loops were chosen
for convenience, and other closed-loop excursions would also have been appropriate. Of primary interest
in the subsequent discussion is the proximity of the V:H load paths to the instance of the yield surface
following 100mm (2D) of purely horizontal displacement at a penetration depth 12.5mm. Accordingly,

for ease of comparison, the same axes have been chosen for each of the plots in V:H space.

Test CL1

The plots in V:w space in Fig. 5.20 show that following a small, compliant regime at the start of each
loop (from a—b), V increased approximately linearly with w to point c¢. From b—c in each loop, the
vertical stiffness was sufficiently low to suggest that bearing capacity failure — hence, plastic displacement
— occurred (for example, the stiffness in Loop 8 from b—c was approximately 250kPa, considerably less
than the vertical elastic stiffness values identified in §5.3.1). Accordingly, in the context of a force-
resultant plasticity model, it is appropriate to infer that hardening took place during these portions of
each loop. The V:w plots show that the gain in V' in passing from b to ¢ was greater for the larger loops
than the smaller ones, suggesting that, as expected, more hardening occurred in the larger loops. From
c—d, the plots in Fig.5.20 show that V' continued to increase, although the V:w response is seen to be
less stiff than it had been from b—-c.

The V:H plots show that there is a sharp change in the curvature of the load path around the
peak V (close to point d). As is evident from the u:H plots (particularly those corresponding to the

larger loops), there was minimal change in H with u around this peak in V. This suggests that there
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are a collection of (V, H) load points closely grouped around the peak V' which correspond to different
increment plastic displacement directions and, hence, flow vectors of different inclinations. In Chapters
3 and 4, the direction of incremental plastic displacement at the apex of the yield surface at the peak
V was found not to be unique. Accordingly, in this respect, there appears to be agreement between the
experimental data and the numerically-derived results.

The results of the numerical analyses presented in Chapter 4 suggest that the value of V for which
purely horizontal incremental plastic displacement occurs is substantially lower than the peak V on the
current instance of the yield surface. Accordingly, for the experimental data to agree with the numerical
predictions, V' must reduce on approaching point e (the point when purely horizontal movement was
prescribed). The plots in V:H space for all loops in Fig.5.20 show that this is precisely the response
which was observed. Indeed, it is noteworthy that the response from d—e is broadly similar to that
found to occur during a swipe test. This finding suggests that locally (that is, for displacement excursions
which are of sufficiently low magnitude to prevent significant changes in the seabed surface geometry), a
vertical plastic displacement increment gives rise to more hardening than a horizontal plastic displacement
increment of the same magnitude (and hence during purely horizontal displacement, the V:H load path
would be expected to track close the yield surface). Accordingly, for future investigations, it would appear
likely that a test similar to a swipe — as described in the preceding section — could be used to determine
the instance of the V:H load surface following large-amplitude lateral displacement. From e—f—g—h,
the (V, H) load point remained close to the origin, suggesting that purely plastic displacement occurred
during these portions of the loops.

The load paths from ¢ onwards for each of the eight loops are shown on common set of V:H (dwp:du,)
axes in Fig.5.22. Also shown are the flow vectors corresponding to: (i) purely downward incremental
plastic displacement, (ii) incremental plastic displacement with downward and rightward components of
equal magnitude, and (iii) purely rightward incremental plastic displacement (the position of all flow
vectors were deduced by neglecting the incremental elastic displacements in each loop). The plot shows
that, with increasing loop radius, the flow vectors directed parallel to the V' axis plot closer to one another,
suggesting that the amount of hardening experienced per mm of vertical displacement tended to reduce
with increasing penetration depth. After passing the peak in V| the V:H load paths plot reasonably
close to one another, thus giving a clear depiction of the location in V:H space of this portion of the
yield surface. It is also noteworthy that the flow vectors corresponding to purely horizontal incremental

plastic displacement are very close to each other.

Test CL2
In Test CL2, the initial movement was downward, as shown on the u:w plots in Fig. 5.21. The stiffness
under vertical loading in this test was initially much higher than in Test CL1 (approximately 1000kPa).

For the six largest loops, on reaching the points labelled Y, the gradient of each V:w curve decreased,



Chapter 5: Experimental investigation 201

data markers every 12° of each loop |

\ T T T T T
0.2 - = A — B
0.15 - _
Q
~
s
o 0.1 N
= —o6— 0.lmm
é A — 5 0.4mm
= 0.05 3 H
'z & ——x— 0.6mm
T —%—— 0.8mm
0 —+— 1.0mm ||
—A— 1.4mm
—0.05 |- — < 1.8mm [|
— 55— 24mm
—0.1 L ! ! ! ! ! ! ! ! ! ! ! :

0 005 01 015 02 025 03 035 04 045 05 055 06 0.65
V (N/mm), dwp/D

Fic. 5.22: Test CL1 — V:H load paths for various loops.

indicating a reduction in stiffness. In the context of force-resultant plasticity, one interpretation of these
results is that each point labelled Y is a yield point and, hence, from a—Y (shown in bold on the plots)
the response is elastic. Support for this interpretation of the results can be obtained from an examination
of each of the plots in V:H space, which show a change in the gradient of the V:H load path on reaching
a point close to Y (as is consistent with the observations noted in Chapter 4 concerning the tendency for
the load point to track along the yield surface to find the yield point where the flow vector aligns with
the direction of the prescribed plastic displacement increment). For the smallest two loops, the V:H
plots show little change in the loads, suggesting that these loop were sufficiently small to prevent the
load path reaching the yield surface. The plots in V:H space show that the peak in V (reached between
Y and b) increased with loop radius. As in Test CL1, this response is likely to be due to hardening; for
the larger loops, more penetration was prescribed and, hence, the increase in vertical load was higher.

From b—c, the pipe underwent predominantly horizontal movement in which it was moved away
from the berm. The plots in V:w and V:H spaces show that V reduced considerably in these portions of
the loops. This finding is consistent with the results presented in Chapter 4, since for the analyses carried
out using a non-associated flow rule (as appropriate to drained sand), the flow vector corresponding to
leftward incremental plastic displacement was found to be located close to the origin. As for Test CL1,
it is noteworthy that the response over this portion of each loop is similar to the response expected
for a swipe test, again suggesting that vertical plastic penetration has a more substantial influence on
hardening than horizontal plastic displacement.

In Fig.5.23, the load paths for the eight loops are reproduced on a common set of V:H axes with
the elastic portions of each loop omitted. Also shown are the flow vectors of the yield points (i.e. those
labelled Y on the V:H plots in Fig. 5.21) together with the flow vectors corresponding to purely leftward

displacement (again, the position of all flow vectors were deduced by neglecting the incremental elastic
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F1G. 5.24: Comparison between load paths, yield points and flow vectors of Tests CL1, CL2, DCP, together
with a plot of the corresponding numerically-calibrated yield surface.

displacements in each loop). On passing the peak V', the load paths for the various loops do not plot as
close to one another as those of Test CL1. This is, however, a finding which is consistent with the results
of the numerical analyses since the introduction of more surcharge behind the pipe (higher t5) was found

to cause the yield curve to cross into the positive V', negative H quadrant of the V:H plane.

Summary and comparison with the numerically-calibrated vield surface

From an examination of the results of Tests CLL1 and CL2, hardening was expected to have taken place
during the portions of the loops for which pipe was being displaced vertically downward. Accordingly,
the V:H load paths were not inferred track along the instance of the yield surface arising from the
lateral displacement of 100mm (2D), but instead were expected pass through a series of expanding yield

surfaces. Nevertheless, the shapes of the load paths suggest that the V:H yield surface is confined to the
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FiG. 5.25: Test DCP: test record.

positive V', positive H quadrant of the V:H plane, as was found to be the case based upon the results of
the numerical analyses presented in Chapters 3 and 4.

From Fig.5.19, a representative value of the average height over one pipe diameter to the right of the
pipe was determined as 0.7D. For comparative interest, the numerically-calibrated instances of the yield
surface for 1 = 0.7 and 5 = 0 is shown in Fig.5.24. Also reproduced are the load paths for the 0.4mm
loop in Test CL1 and the 0.4mm and 0.6mm loops in Test CL2 — loops for which plasticity was clearly
evident but the amount of hardening experienced was comparatively small. While the experimental load
paths do not overlie the numerically-calibrated yield surface, there is broad agreement. This tends to

suggest that the size and shape of the numerically-calibrated yield surface is appropriate.

5.3.4 Large lateral displacement: displacement-controlled probe tests (Test DCP)

Test DCP was carried out to generate further data on the combined V:H loading response following
large-amplitude lateral displacement. In this test, as shown in Fig.5.25, the pipe was first penetrated
to a depth of 8.33mm (P/6) and then displaced horizontally by 100mm (2D). The pipe was then moved
along a straight path of prescribed inclination (which, as in Chapter 4, will be termed here as a probe).

After each probe, the pipe was moved upward/downward by the appropriate amount to return the pipe
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Fic. 5.26: Test DCP: soil surface profiles prior to each probe.

to the same vertical position as immediately before the first probe. Next, the pipe was subjected to
lateral displacement of 5mm (DP/10) before the next displacement-controlled probe and vertical position
correction were carried out. This process was repeated five times to give a total of six probes. The
probes are denoted as E—F, G—H, I—J, K—L, M—N and O—P on Fig.5.25. The choice of length
for the probes was critical; if the value was too low, then yielding would not be evident whereas if its
value was too large, then the distribution of stresses within the test-bed would be altered to a sufficient
extent that they would influence the subsequent probes. Based on earlier trial testing, a probe length of
1.4mm (0.028D) was selected. The inclinations of the probes were chosen as 5°, 15°, 70°, 105°, 120° and
150°, measured clockwise from the positive u axis. Like in Tests CL1 and CL2, the purpose of the lateral
displacement undertaken between two successive probes was to return the load point in V:H space to
approximately the same position as before the probes were carried out. The small LVDT set was used
to measure the displacements during the probes; it was attached to the loading rig prior to each 5mm of
intermediary lateral movement, and was detached before the vertical elevation of the pipe was corrected
following each probe. The soil surface geometries at the end of the probes were also measured (after the
small set of LVDTs had been removed). Fig.5.26 shows that, as desired, the geometry of the test-bed
did not change significantly during the probing portions of the test.

Fig.5.27a displays the results of Test DCP, with only the probing events themselves shown (i.e. data
logged between probes have been omitted for clarity). For the 5° and 15° probes, the variation of load
with displacement, in both u:H and V:w spaces, is characteristic of an elastic perfectly plastic material
i.e. a sharp reduction in stiffness is evident, after which displacements accumulated with no further
increase in load. Accordingly, for these two probes, the load point in V:H space is seen to settle at
fixed location, thus clearly revealing a yield point and flow vector. For the 150° probe, the response is
broadly similar to that of the 5° and 15° probes, except that the elastic regime appears to be sufficiently
small that displacements accumulated with very little change in load. This response is indicative of yield
points lying close to the origin in V:H space. For the 105° and 120° probes, while the response in u:H
space identifies a definitive transition from an elastic to an elastic-plastic response, in V:w space, there
is no such definitive transition. One interpretation of these observations is that the extent of the probe

was not sufficient to reach yield and, hence, the load path shown in V:H space terminates at a point
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within the yield surface. An alternative, and more plausible interpretation (given the high stiffness of
sand), is that the path is elastic-plastic and undergoes hardening over the extent of the probe i.e. the
load path in V:H space passes through a series of expanding yield surfaces. Deciding upon a yield point
is therefore, to some extent, subjective. Furthermore, for the 70° probe, no definite transition to yield is
discernible in either V:w or u:H space.

The plot in Fig.5.27b displays the approximate location of the (V, H) yield points inferred from the
probes. As described above, the choice of a yield point for the 70°, 105° and 120° probes is rather
subjective and so two yield points, joined by dashed lines, are included on the plot to indicate the start
and end of the region over which plasticity was encountered. The yield locus formed from the yield points
is almost entirely confined to the positive V', positive H quadrant of the V:H plane (thus providing good
qualitative agreement with the findings of the numerical analyses). Flow vectors — again deduced by
neglecting the incremental elastic displacements during the probes — are also shown. In Fig. 5.24, the
data plotted in Fig.5.27b is shown together with that of Tests CL1 and CL2 as well as the corresponding
numerically-calibrated yield surface. Together, these results provide a consistent depiction of the size
and shape of the yield surface. Also, given the orientation of the probe test flow vectors (relative to the
yield surface), the results of this test confirm the need to calibrate a non-associated macroscopic flow

rule in the force-resultant model.

5.4 Results of constant V tests

5.4.1 Large lateral displacement: Test CV1

Test record

Fig.5.28 is a record of Test CV1 showing the variation, with time, of the loads, H and V', and the
displacements, u, w and 6 (as measured by the set of LVDTs mounted on the rig). The test commenced
with vertical penetration (0—a) at a constant rate of 0.1mm/s until a penetration depth of 8.33mm (D/s)
was recorded (point a). Next, a command was sent to SM-V to reverse the direction of vertical motion so
as to lift the pipe upwards (a—b) at a constant rate of 0.00lmm/s (the slowest rate at which which SM-V
could operate). Uplift ceased once the vertical load reduced to 10.29N, 1/ 10" of the peak value recorded
during vertical penetration. This meant that, prior to lateral displacement, the overloading ratio, R, was
10. A total vertical load of 10.29N implies, for a 250mm length pipe segment, a per-unit-length values
of 0.0412N/mm and, for ' = 15.1kN/m3, a dimensionless vertical load, V, of 1.09. V of 1.09 implies a
per-unit-length value of 4.1kN/m, which is certainly in the range of typical values used in practice.

Lateral displacement commenced as soon as uplift stopped. Initially, the rate of lateral displacement
was 0.00lmm/s, but this was ramped up smoothly over the first 25mm (D/2) of lateral movement (b—c)

until a peak value of 0.05mm /s was reached. The lateral displacement rate was then held constant at this
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value until the specified lateral displacement limit of 100mm (2D) was attained (point d). The direction of
lateral displacement was then reversed, with the lateral velocity from d—-e increased in the same manner
as over b—c. At point e (u = Omm), the direction of lateral displacement was, again, reversed and — on
following the same lateral velocity variation as over b—c and d—e — lateral displacement continued until
u =195mm (3.9D, at point ). The pipe was then returned to v =0mm (f—g) before the cycle of lateral
displacement over e—g was repeated (g—1i). The entire test lasted 8 hours 38 minutes.

During lateral displacement, feedback control was used to ensure the recorded vertical load remained
within close proximity to its demanded value of 10.29N (penetration was requested if the recorded load
dropped below the demanded value and, conversely, uplift was requested if the recorded load increased
above the demanded value). Fig.5.28 shows the record of the vertical load, V', for the entire test and
identifies that, for the most part, the vertical load holding control algorithm functioned as intended.
Indeed, during lateral displacement, the maximum and minimum vertical load values were, respectively,
14.46N and 6.91N (14.1% and 6.7% of 102.9N respectively i.e. within close proximity to the desired 10%).
The most onerous phase of the test, with regard to the correct functioning of the vertical load hold control
algorithm, occurred on approaching the extremities of a lateral displacement cycle — particularly so during
the third cycle (i.e. on approaching points g and i). The vertical load tended to rise above the demanded
10.29N during these portions, despite the relatively sharp uplift which was commanded (as evident from
Fig.5.28). While higher values for the control variables, Kp and Kj, would have helped to alleviate
these problems, this would have increased the likelihood of encountering catastrophic instabilities (cf.
the discussion in §5.2.4). Nevertheless, the drift from the demanded V' =10.29N was unlikely to be
sufficiently large that the measured histories of w and H differed greatly from those which would have
been recorded if constant V had been enforced exactly. Furthermore, with regard to the testing of the
proposed force-resultant model (which is described in the next chapter), the measured outputs of the
controlled variables (rather than their requested time histories) can be used as inputs to the model
simulations so as to allow the predictive capabilities of the model to be assessed independent of the fact
that constant V' was not maintained exactly. A final noteworthy comment on the functioning of the load
hold control algorithm concerns the fluctuations present in the recorded history of V. The magnitude
of these fluctuations exceed those due to transducer noise alone; accordingly, it would appear likely that
they are physical responses (probably due to corrections in vertical position emanating from the control

algorithm, but conceivably due to a stick-slip type response during failure).

Presentation of results

Fig.5.29 contains plots showing the results of Test CV1. Figs 5.29a, 5.29b and 5.29¢ show, respec-
tively, results for cycles 1 (b—e) , 2 (e—g) and 3 (g—1) while Fig. 5.29d contains two summary plots for
the entire test, one showing the variation of H with u, and the other showing the variation of w with .

For clarity, the portions of the test involving leftward movement are shown in bold.
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As discussed in §5.2.8, the displacement history recorded during Test CV1 was taken as the input for
a displacement-controlled test using the PIV apparatus, as carried out and reported by Jones [132]. From
the images supplied by Jones, the velocity vector fields at 16 stages during the test were determined; these
are presented in Fig.5.30. The data markers with labels, A...P, on the u:H plots in Fig.5.29 identify
the point during the test to which the velocity vector plot with the same label in Fig.5.29 corresponds.
Each velocity vector field was generated using GeoPIV, taking a grid of 24 pixel width squares, separated
from each other by 48 pixels. On each plot in Fig.5.30, the seabed surface — as deduced by manually

selecting points on the surface of each photograph — has also been shown.

Observations over cycle 1 (b—c—d—e)

The w:H plot in Fig.5.29a shows that, at the start of the test, the horizontal load:displacement
response was very stiff; indeed, H had increased to 0.029N/mm after u had reached just 0.2mm (0.004D).
Then, the stiffness reduced substantially, with H increasing by just 0.017N/mm over the remaining
100mm of the leg. Accordingly, the horizontal load:displacement response over the first leg appears to
be similar to the prediction made by an elastic-hardening-plastic model, with the horizontal component
of the yield (or breakout) load equal to 0.029N/mm. Reassuringly, this suggests that the proposed force-
resultant model should be able to replicate the experimentally observed trends (at least with regard to
the horizontal load:displacement response during the initial lateral movement).

The w:w plot in 5.29a shows that the pipe initially underwent slight penetration, reaching a peak
depth of 9.2mm (0.18D) after 42.1mm (0.84D) of lateral displacement. As discussed in Chapter 2, the
tendency for the pipe to penetrate or uplift is initially dependent on the magnitude of the overloading
ratio, R. If R exceeds some critical value, penetration is expected, if it is less than this critical value,
uplift is expected, and if it is equal to this critical value, lateral displacement at constant elevation is
expected (as noted in Chapter 2, the point on the yield surface with an R value equal to the critical one
is termed the parallel point). Since penetration occurred at the onset of lateral displacement, this data
suggests that the critical (i.e. parallel point) value of R is less than 0.1 (although, in all likelihood, only
marginally so, since the penetration was not substantial). Indeed, between 16.9mm (0.34D) and 45.7mm
(0.91D), the horizontal load remained (approximately) constant and lateral displacement occurred with
a negligible change in the pipe’s vertical elevation — a response consistent with the notion of reaching
the parallel point. However, following the first 45.7mm of lateral displacement, the pipe started to move
along an upward trajectory, suggesting that the response had begun to diverge from those predicted by
‘small’ displacement force-resultant models (e.g. the models of Hodder & Cassidy [41] and Zhang et al.
[38], as detailed in §2.7.2).

Explanations for the trends evident in the data for the outward leg of the first cycle (namely, the
gentle increase of H with u, and the tendency for the pipe to migrate upwards towards the end of the leg)

are readily provided with reference to the vector fields at positions A, B and C in Fig.5.30. At positions
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(a) Cycle 1

A

(b) Cycle 2

F1G. 5.30: Velocity vector fields at various stages of Test CV1 (as determined from PIV analysis).
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A and B, it is evident that lateral displacement occurred by lifting soil upward to form a berm ahead of
the pipe. It is likely that the increase in passive resistance due to berm growth was the primary cause
of the increase of H with u. By position C, the berm had grown substantially and, if uplift had not
occurred, it is inevitable that a deep-seated failure mechanism, requiring a higher V' than the prescribed
one, would have been needed to allow lateral displacement to continue. Accordingly, since the vertical
load was maintained as constant (at least, approximately so), the pipe experienced uplift, reaching an
elevation of 7.3mm (0.15D), by the end of the test — approximately Imm above the penetration depth
immediately prior to lateral displacement.

On reversing the direction of lateral displacement (after reaching point d), a stiff, initial response
occurred, with H reducing to -0.009N/mm after just ~ 1.25mm of horizontal travel (such that that
the (V, H) load point passed into the positive V, negative H quadrant in the V:H plane). Over the
remainder of the leg, the magnitude of H increased gradually (although, at a greater rate than over the
outward leg, b—d). The u:w plot offers an explanation for this response. The pipe underwent substantial
penetration over the first 58.5mm (1.17D) of the return leg, reaching a peak penetration depth of 14.8mm
(0.30D) — an increase of 7.52mm (0.15D) relative to the penetration depth attained at d. This increase
in penetration gave rise to an increase in the passive resistance which had to be mobilized to continue
lateral displacement and, hence, led to the increase in H. The penetration, itself, occurred because —
without the presence of a berm to the left of the pipe — lateral displacement could otherwise have taken
place under an applied V of lower magnitude than the prescribed one. Over the remainder of the cycle,
the trajectory of the pipe first leveled off, before rising by approximately 2.8mm (0.06D) over the leg’s
final ~40mm (~0.80D). The reasons underpinning this final, upward movement are largely the same
as those outlined above for the outward leg. Namely, on reaching the leftmost extremity of the cycle,
the pipe encountered the higher embedment depth of the virgin soil to the left of the initial embedment
site. An increase in V' would have been required to generate the deep-seated failure mechanism needed
to plough through this material at constant elevation and, so, to maintain V' at its prescribed, constant
value, uplift occurred. Also, within this final portion of the cycle, the horizontal load increased markedly
— at position E, H was 0.036N/mm while, just 20mm (0.4D) later (on reaching point F), it had increased
by 31% to 0.047N/mm. This response is also a consequence of encountering the higher passive resistance

of the higher embedment on approaching point e (see the velocity vector field at F).

Observations over cycle 2 (e—f—g)

At the start of the rightward leg of the second cycle (e—f), the horizontal load increased rapidly such
that the (V, H) load point returned to the positive V', positive H quadrant after just 0.7mm (0.01D)
of lateral displacement. The pipe then underwent substantial penetration, falling by 6.8mm (0.14D)
over the first 30mm (0.6D) of the leg. The reasons for this penetration are largely the same as those

discussed above for the first cycle; namely, without a berm to the right of the pipe, penetration was
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required to ensure that lateral displacement occurred under the prescribed vertical load (rather than one
of lower magnitude). The increase in penetration brought about a higher passive resistance and, hence,
an increase in the horizontal load (after 30mm of travel, H had reached 0.029N/mm).

Over the next 50mm (1D) of this leg, the pipe encountered the berm which had been deposited
at the rightmost extremity of the first cycle (see the velocity vector plot at position G in Fig.5.30).
Unsurprisingly, therefore, the horizontal load increased markedly over this phase of the test (more than
doubling to 0.075N/mm). Also, the pipe began to follow an upward trajectory, rising by approximately
3.2mm (0.06D) in this portion of the test. The reasons for this uplift are the same as those outlined above
for the first leg; namely, unless uplift had occurred, a higher V' than the prescribed one would be required
to provide further growth of the berm and, hence, continue lateral displacement. The pipe continued its
upward trajectory over the remainder of the leg, reaching a final embedment depth of 9.7mm (0.19D)
at d. Interestingly, over the latter half of the leg, the horizontal load remained constant (despite the
substantial berm growth evident at H and I in Fig.5.30). It would appear that berm growth (which is
expected to increase lateral resistance) and uplift (which is expected to reduce lateral resistance) offset
one another, thus, giving a constant lateral load.

On reversing the lateral displacement direction, the (V, H) load point transitioned rapidly into the
positive V', negative H quadrant of the V:H plane (in keeping with the notion of an initial stiff, elastic
response, as discussed above). Then — like in the first cycle — the pipe underwent substantial penetration,
descending by 5.8mm (0.12D) over the first 25mm (0.5D) of the leg. At the end of this portion of the
test, the magnitude of the horizontal load had increased to 0.028N/mm and, over the subsequent 100mm
(2D) of horizontal travel, it did not change substantially from this value. At first sight, this response is
surprising given that the w:w plot shows that the pipe followed a descending trajectory over the first half
of this leg. However, an examination of the test-bed surface at positions H, I and J shows that, to the left
of the pipe, the seabed surface which formed from the outward excursion, sloped downward such that a
downward trajectory was required to maintain contact between the pipe and the seabed. This aspect of
the test emphasises the necessity for a force-resultant model to be able to keep a record of the evolution
of the seabed surface in memory. Over the last 50mm (1D) of the leg, due to the impact with the berm

at the leftmost extremity of the cycle, the magnitude of the horizontal load increased markedly.

Observations over cycle 3 (ge—h—i)

Both reversals in the lateral displacement direction in the third cycle exhibited the characteristic
stiff, initial load:displacement response which was evident in the previous two cycles. The u : w plot
contains a pair of concave upward curves, showing that the pipe fell on approaching the centre span
and rose on approaching the cycle’s lateral displacement extremities (the reasons for these changes in
vertical elevation are the same as those discussed above for the first two cycles). Over the first leg of

this cycle (g—h), berm accretion (as shown by the velocity vector plot at position M) led to a gradual
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increase in horizontal load. Since no noticeable changes in H or w were recorded after undergoing 100mm
(2D) of lateral displacement (the position of the rightmost extremity of the first cycle), it is evident that
the immediate influence of the history of movements during the first cycle had been erased. However,
on encountering the berm deposited at the rightmost extremity of the second cycle (at h), the load
increased markedly, reaching a peak value of approximately 0.096N/mm. This is greater than the peak
of 0.075N/mm attained in the second cycle (see also Fig.5.29d) and there are two (related) reasons to
explain the increase. Firstly, by the end of the first leg of the third cycle, more soil had been deposited
in the berm at the rightmost extremity of the cycle (such that, for failure to continue, the higher passive
resistance of the larger berm had to be mobilized). Secondly — as shown by the velocity vector plot at
position O — failure involved pushing soil at an inclined direction, with an upward component. The uplift
at the end of the cycle (at i) brought the pipe to a vertical position just 1.51mm (0.03D) lower than at
the start of the cycle (at g).

In general, the velocity vector fields in Fig.5.30 suggest that the soil was close to critical state
throughout the test (only, perhaps, at positions A and D is there evidence of the gross surface movement
indicative of dilation). As discussed in Chapter 2, a loose sand preparation was intended to offset the
influence of the lower stress level present in 1g testing. Accordingly, based upon these PIV images, it
is appropriate to conclude that the sample was sufficiently loose to ensure that excessive dilation was
suppressed, and hence the results (when presented in the appropriate dimensionless form) are applicable

to pipes of large diameter also on loose sand.

Implications for the proposed force-resultant model

The key findings deduced from Test CV1 can be summarized as follows:

1. The load:displacement response at a particular instant during cyclic, lateral displacement is dependent
on the history of prior movements which have brought the pipe to its current position. In particular,
on encountering a berm deposited from a previous excursion, there is a tendency for the horizontal
load to increase and the vertical elevation to reduce. Accordingly, it is essential that a force-resultant
model can keep an appropriate record of the prior history of movements, just as the model proposed
here does (by considering the seabed as an assembly of columns, and storing and updating their
heights following changes in plastic displacement; ¢f. the discussion in §2.11 in Chapter 2).

2. To understand the load:displacement response of a pipe undergoing lateral displacement, it is essential
to account for the response in both the lateral and vertical degrees of freedom (and their interdepen-
dence). For example, the horizontal load at a particular instant during lateral displacement will
depend on the embedment depth and, hence, the vertical elevation of the pipe. For this reason, the
berm size (and strength) cannot be reliably correlated to the lateral resistance (since it will dependent

on the direction, in the u : w plane, along which the pipe is moving).
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3. As evident from the second cycle of Test CV1, the increase in lateral resistance due to the merger of
two berms did not occur as a sharp step-change but, rather, took place over a lateral distance of finite
extent. The proposed force-resultant model should be able to replicate this trend since the heuristics
to predict the evolution of the seabed (discussed in the next chapter) account for the gradual merger

of two berms.

Single-sided failure mechanisms are evident for the vast majority of positions A-P in Fig.5.30 (the
exceptions being D and J, which show two-sided failure mechanisms following a change in the lateral
displacement direction). This is in broad agreement with the findings of the OxLim analyses discussed
in Chapter 3. Accordingly, it would appear likely that the size and strength of the berm to the side
of the pipe into which the pipe is displacing primarily governs the (V, H) capacity for that position.
Therefore, in the context of the proposed force-resultant model, it is likely that, for rightward movement,
the hardening parameters, Vi and Hy, are largely insensitive to to (and vice-versa regarding the influence
of t; on Vo and Hj). However, as also discussed in Chapter 3, formulating a more generic force-resultant
model in which the combined V:H loading capacity is taken as function of both ¢; and ¢5 is not, in itself,

a weakness (and could aid more accurate predictions, particularly when either ¢; or ¢ approach zero).

5.4.2 Large lateral displacement: Test CV2

Fig.5.31 shows the record of the loads and displacements recorded during Test CV2. The history of
vertical displacement specified prior to lateral displacement was, in general, similar to that in Test CV1.
Over 0—a, vertical penetration to a target depth of 8.33mm (P/6) was requested, followed by uplift to
attain a specified overloading ratio (over a—b). For this test, the peak vertical load was recorded as
108.25N (corresponding to give a per-unit-length value of 0.433N/mm), while the specified overloading
ratio was 5. Accordingly, the target vertical load for the remainder of the test was 21.65N (0.113N/mm).
The number and amplitude of the lateral displacement cycles (over b—c—d—e—f—g—h) was the same
as in Test CV1.

The results of Test CV2 are shown in Fig.5.32 and are presented in the same format as those of Test
CV1. Also shown in Fig.5.33 are the seabed surfaces at the intermediary points labelled A...M on the
u:H plots in Fig.5.32. The key observations which distinguish the results of this test from those of Test

CV1 are as follows:

1. Over the first leg of the first cycle, the plot in u:w space in Fig. 5.32a shows that the pipe underwent
continual penetration, reaching a penetration depth at point b of 24.1mm (0.48D). This sharp, initial
downward movement is consistent with the fact that the overloading ratio in this test was twice that
used in Test CV1.

2. The plot in u:H space in Fig.5.32a shows that the horizontal loads recorded from a—b in Test CV2

were more than double those recorded over the equivalent portion of the first cycle of Test CV1. The
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reason for this higher H is due to the downward trajectory of the pipe, which as shown by the plots
in Fig.5.33A and Fig.5.33B led to the formation of a larger berm offering greater passive resistance.
3. Due to the sharp downward movement (and the related formation of a substantial berm), the soil is
shown to over-top the pipe during the second and third lateral displacement cycles; see, for example,

Figs 5.331, 5.33J, 5.33K and 5.33M.

As for Test CV1, the results of this test highlight that, unless a predicative model maintains an appropri-
ate record of the evolving seabed geometry, it will not be able to make realistic predictions of H during

cyclic lateral displacement.

5.5 Concluding comments

In this chapter, the results of a scale model testing programme, carried out under plane strain condi-
tions, were reported. The aims of this experimental programme were: (i) to determine data pertaining to
the current instance of the V:H yield surface (and the distribution of flow vectors over the yield surface),
and (ii) to measure the evolution of w and H during horizontal displacement-controlled movement of
the pipe element under constant vertical load. The results of the first strand of the testing programme
provided evidence to suggest the suitability of the choice of yield function and that the numerically-
calibrated hardening parameters provide appropriate estimates to the V:H load capacity afforded by the
seabed. The results of the second strand of the experimental tests showed the strong interdependence
between the evolution of the seabed surface and the V:H load capacity. Field-representative values of
the pipe weight and overloading ratio were used, such that these tests provide the necessary data against

which the model discussed in the next chapter can be tested.
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Enlargement A

Enlargement B
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FiG. 5.31: Test CV2: test record.
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F1Gc. 5.33: Soil surfaces at intermediary stages of Test CV2.
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Numerical formulation and implementation of the
force-resultant model

6.1 Introduction

Chapters 3 and 4 detailed numerical analyses from which a yield function was selected and procedures
outlined to enable the hardening and plastic potential parameters (Vy, Hy, Vo, Ha, B1, m, P2 and 19)
to be determined for given values of ¢y, ta, ¢’ and §. This procedure is one constituent of the proposed
hardening law framework, as introduced in §2.11. However, the heuristics used to update the geometric
parameters, t; and to, following an incremental change in the plastic displacement of the pipe have yet
to be detailed. In this chapter, the description of the force-resultant model is completed by specifying
these heuristics. Details of the numerical implementation of the model are then reported, including the
use of a fully implicit (backward Euler) scheme to carry out the integration of the rate equations. Several
examples to demonstrate the operation of the model are presented, and its validity is confirmed by the

presentation of retrospective simulations of the some of the tests reported in Chapter 5.

6.2 Seabed surface update: heuristics and implementation

In §2.11, the concept of a discrete data structure to maintain a record of the seabed surface geometry
(via the use of the array, S) was outlined. In the following, details are provided of the procedures used
to update the entries of S following a change in plastic displacement.

The scheme to update the seabed surface is central to the hardening laws. It allows the influence of
the history of the pipe displacement to be held in memory, and accessed when needed by the algorithms
(discussed subsequently) to carry out the elastic-plastic updates. However, it is important to acknowledge
that, while the set of heuristics and procedures proposed here are felt to capture the key aspects of the
redistribution of the soil across the seabed, alternative (though, similar) heuristics and procedures could

undoubtedly be conceived.
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F1G. 6.1: Flow chart showing the sequence in which the various subroutines discussed in §6.2 are called by
UPDATE _MAIN.

STOP

@

6.2.1 Key subroutines
The algorithm was initially implemented in MATLAB, but later ported to FORTRAN 90 for use

with Abaqus.

SUBROUTINE: UPDATE_MAIN

UPDATE_MAIN schedules the calls to the four subroutines (CALCULATE _AREA, SPLIT AREA,
REDISTRIBUTE and REPOSE _CORRECTION) tasked with updating S. The flow chart in Fig.6.1
displays the sequence in which these subroutines are called, together with the key input and output
variables of each (the meaning of each symbol in this flow chart is provided in the following discussion).

UPDATE_MAIN also carries out important pre/post-processing roles to limit the relatively high
computational expense of updating S. The schematics used in this chapter (e.g. Fig.6.2) show the
seabed to be divided into tens of columns per pipe diameter. However, in practice, it was found that
hundreds of columns were required to provide the refinement needed to give converged solutions for the
updated loads. Since the update in the pipe’s plastic displacement only affects the seabed profile in

the local vicinity of the pipe, it was deemed unnecessary to pass the entirety of S to the subroutines
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F1G. 6.2: Schematic showing the extraction of S, the local portion of the seabed surface height array, S.

tasked with carrying out the updates. Accordingly, as shown schematically in Fig. 6.2, the elements of
S corresponding to locations within a user-specified distance (Lg) of the pipe centre are extracted to a
new array, S, which is then passed to each of the subroutines called by UPDATE_MAIN. Operations
on S can be carried out more efficiently than those on S, and with a lower memory demand; a typical
value used for Lr was in the range 4D — 6D. Following each call to UPDATE MAIN, the first and
last entries of S are compared with their initial values to check that the sequence of updates do not
cause the first and last entries of S to change (thus indicating that the selected value for Lr was too
low). An error statement is printed if indeed the first or last entry of S has been corrected. However, in
practice, this eventuality was only found to occur if the model was used in a structural analysis in which
an unstable (snap-through buckling) response was inadequately handled and, hence, was indicative of a
wider problem (rather than one pertaining the seabed surface update itself). Finally, UPDATE MAIN

re-compiles S by inserting the updated entries of S at the appropriate locations.

SUBROUTINE: CALCULATE _AREA

CALCULATE _AREA carries out the first update to S, and its operation is explained in the following
with reference to Fig.6.3. Figs 6.3a and 6.3b show the pipe in its initial and updated positions without
any updates, as yet, applied to S. As shown by the grey shaded region in Fig.6.3b, the pipe’s updated
position is seen to overlap the initial seabed surface. This overlapping area — labelled A in the figure
— is removed by correcting any columns in the range: imip - - - imax Such that their heights are set to be
the same as that of the lower surface of the pipe at the same lateral position, as stored within the array,
p. The corrected seabed surface is shown in Fig. 6.3c. A is then evaluated as the difference between the
original area of the seabed and that after the corrections are applied.

As shown in the flow chart (Fig.6.1), if A = 0 i.e. the movement of the pipe is such that there
is no overlapping soil (a scenario brought about only if the pipe’s plastic displacement is predomi-
nantly vertically upward), then no redistribution is required and the update scheme proceeds to call

REPOSE CORRECTION. Otherwise, if A > 0, SPLIT AREA is called.
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F1G. 6.3: Schematic diagram to aid the explanation of CALCULATE AREA.

SUBROUTINE: SPLIT _AREA

SPLIT AREA is called to obtain &4 and &_, the proportions of the overlapping soil area, A, to be
redistributed to the right and the left of the pipe’s centre respectively. For simplicity, £+ and £_ are
assumed to be solely dependent on o = arctan (Awp/Av,). The heuristic which is used in SPLIT _AREA

to determine £, and £_ is based upon the following reasoning.

1. Purely vertical, plastic penetration (Aw, > 0, Au, = 0) is assumed to cause an equal split of A to
either side of the pipe; i.e. for « = 90°, £, = - = 0.5 is assumed. This assumption corresponds to
the points A and A’ on the plot in Fig. 6.4.

2. A plastic displacement increment with a positive horizontal (rightward) component (Aw, > 0) is
assumed to cause a higher proportion of A to be redistributed to the right of the pipe’s centre than
to its left; 7.e. for —90° < v < 90° it is assumed that £, > 0.5 and £_ < 0.5. Likewise, for a plastic
displacement increment with a negative horizontal (leftward) component (Awu, > 0, 90° < a < 180°),
&+ < 0.5 and £- > 0.5 are assumed.

3. A positive, purely-horizontal, plastic displacement increment (Aw, = 0, Au, > 0), is assumed to
cause all of the soil to redistribute to the right of the pipe’s centre; i.e. for a = 0°, it is assumed that
& =1, - = 0. This assumption corresponds to points B and B’ on the plot in Fig.6.4. Likewise, a
negative, purely-horizontal plastic displacement increment (Aw, = 0, Aw, < 0) is assumed to cause
all of the soil to redistribute to the left of the pipe’s centre. This assumption corresponds to points C
and C’ on the plot in Fig.6.4.

4. A plastic displacement increment with negative vertical and positive horizontal components (Aw, < 0,
Auy > 0) is assumed to cause all of the soil to be redistributed to the right of the pipe’s centre; i.e.
for —90° < a < 0°, it is assumed that &, = 1, £ = 0 (this assumption corresponds to points lying
on the straight lines between B and D, and B’ and D’ on the plot in Fig.6.4). Likewise, a plastic
displacement increment with negative vertical and horizontal components (Aw, < 0, Au, < 0), is
assumed to cause all of the soil to be redistributed to the left of the pipe’s centre (this assumption
corresponds to points lying on the straight lines between C and E, and C’ and E’ on the plot in
Fig.6.4).

The equations defining the straight lines connecting the points A, B, C, D and E were chosen as the

heuristic to define the relationship between &, and « and, likewise, the equations of the straight lines
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F1G. 6.4: Heuristic to define the dependence of £, and {_ on a.

connecting the points: A’, B’, C’, D’ and E’ were chosen as the heuristic to define the relationship

between ¢ and a. Accordingly, &, is determined from the following piecewise relation:

1 for —90°< o <O0°
§&+ =9 1—9a/180 for 0°< a <180° (6.2.1)
0 for 180° < o < 270°

with £_ defined likewise: - = &, — 1. While the above scheme is attractively simple, it is acknowledged

that it is somewhat arbitrary; indeed, other schemes of similar character could undoubtedly be conceived.

SUBROUTINE: REDISTRIBUTE

The role of REDISTRIBUTE is to deposit the excess soil area, A, in a manner which ensures the
total soil area remains unchanged. Clearly then, the geometry update scheme neglects the tendency for
the soil to dilate (although, the extension to account for dilation could be readily included in future
work). In the following, the operation of REDISTRIBUTE is described with reference to the schematics
in Fig. 6.5.

Firstly, the columns to the right of the pipe centre are inspected successively (from the centre out-
wards) to find the first column with a void between the pipe perimeter and the seabed surface; this
column is labelled ¢ = i, in Fig.6.5a. The soil area to be redistributed to the right of the pipe centre,
A, = ¢, A (shown by the hatched block in the upper left hand side of Fig.6.5a) is then deposited suc-
cessively into the columns: =i, ... 4mqs, as follows. Each column in this range is inspected, in turn, to
test whether the area remaining to be deposited exceeds the area of the void. In Fig. 6.5a, fLr is shown
as a hatched block in the upper left hand side of the figure. For this case, /LL exceeds the void area
available in column 4. and, hence, all of this column is filled, as shown in Fig.6.5b. /LL is then updated
by subtracting the area deposited into the first void from its initial value, as shown by the hatched block

in the upper left hand side of Fig.6.5b. The process is repeated for next column, i. + 1, as shown in
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F1G. 6.5: Schematic diagrams to aid the explanation of REDISTRIBUTE.

Fig.6.5c. For column i. + 2, as shown in Fig. 6.5d, the area of the void exceeds the updated A (the
area remaining to be deposited) and therefore only the portion of this column to ensure all of the soil is
redistributed, i.e. to give /NLF:O, is filled. In the eventuality that all the voids in the range i = i. . .. imay
are filled, the remaining soil is deposited uniformly over the columns to the right of 4,4, over a further
user-defined distance (trial runs of the model indicated that 1D gave realistic results). The redistribution
of A_ = ¢_A is carried out in the same manner. Indeed, by inverting the arrays, S and p (such that
S(1) « S(N), p(1) < p(imax), S(2) « S(N —1), p(2) < p(imax — 1), where N is the number of
entries in S) the same code is used to carry out the redistribution of soil to the other side of the pipe.
The scheme outlined above was motivated by the failure mechanisms obtained from the numerical
analyses and experimental work, as presented in Chapters 3-5. In these chapters, velocity vector plots
were presented which identified failure mechanisms consisting of the uplift of soil wedges on either side
of the pipe with the soil outside each wedge largely undisturbed (refer to Figs 3.7, 3.9, 4.18 and 5.12).
The extent of the wedge along the seabed free surface was found to depend on several factors, including
the seabed surface geometry, the effective friction angle of the sand, ¢’, the dilation angle, v, and the
direction of plastic displacement of the pipe, . While a set of heuristics to account for the influence
of each of these parameters on the redistribution of the soil could be conceived, this approach was
deemed overly complex. Accordingly, on pragmatic grounds, the simpler approach given above was used.

However, this scheme does possess a key trait. For a shallowly-embedded pipe, the majority of the soil
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F1G. 6.6: Schematic diagrams to aid the explanation of REPOSE _CORRECTION

is redistributed into columns between imymi, and imax, whereas, for a deeply-embedded pipe (for which the
voids directly adjacent to the pipe centre are already filled), the majority of the soil is redistributed into
columns outside of the range imin - . - imax- Lherefore, the model captures the spread of soil further from

the pipe centre with increasing embedment depth.

SUBROUTINE: REPOSE_ CORRECTION

In general, the seabed surface profile returned from REDISTRIBUTE contains slopes in excess of the
angle of repose, that is, the difference between the heights of two neighbouring columns, A = S; 11 — 5,
exceeds the critical value, A, = ds tan ¢’ (where the angle of repose has been assumed to be equal to ¢').
REPOSE CORRECTION is tasked with correcting the soil surface profile to ensure that all slopes are
inclined at an angle of, at most, ¢'.

The first step carried out by REPOSE _CORRECTION is to search rightwards from the pipe centre
to find the first pair of neighbouring columns separated by a height, A, in excess of A.. Fig.6.6a shows
two such columns, the larger of the two is labelled column ¢,. Updated values for S; and S; i, are
sought to: (i) preserve the same total soil area of the two columns Ag o = 05 (S;, + Si,+1), and (ii) give

a separation height of A.. Such a solution is found analytically according to:

Ago + AL
S, = === 6.2.2
: 5 (622

Siy1 = Si—A. (6.2.3)

T

Fig. 6.6b shows the soil surface profile after the columns 7, and 4,1 have been corrected to the values given
by the above expressions. However, as indicated on the figure, the difference between S;, 12 and S;, 41 now
exceeds A.. Accordingly, rather than just correcting S;, and S; 41, the column heights, S; ...S; 1+,
where N, > 0, are updated so that the heights of no two columns in the range i = 4, ...%,4n, differ by
more than A.. Generalising the above update equations for two columns to the case of (N, + 1) columns
gives:

As Nr+1 +jN Acés
i = — = 2.4
5 (N, + 1) s (6.2.4)
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S’ir—i—k == Si/y‘"l‘k_l - Ac (625)
for k =1...N,, where jy, is given by the recursive formula:
Je+1=Jk +k+1,

initialized with j; = 1, and:
Ny+1

As,Nle = 65 Z Si,n—i—k
k=1

is the total area of the columns ¢, ...%,4+y,. N, is found using a trial and error scheme. For the example
shown in the schematic, N, = 2 is sufficient, as shown in Fig.6.6c. However, as indicated on the figure,
the difference between S; _; and 5;, now exceeds A., and so the scheme outlined above is implemented in
a loop in which 4, is decremented by one on each pass through the loop until all angle of repose violations
have been eradicated. The scheme is then applied, in an almost identical manner, for any slopes falling
towards, rather than away from, the centre of the pipe. In the same manner as the previous subroutines,
the entries of the arrays s and p are then inverted to allow angle of repose corrections for the slopes

located to the left of the pipe centre to be carried out.

SUBROUTINE: T EXTRACTION

REPOSE_CORRECTION returns the final updated seabed profile, S. The remaining task for the soil
update scheme is to compute updated values for ¢; and ¢5 to be used to determine the current hardening
and plastic potential parameters, as described previously; this step is carried out by T EXTRACTION.

Average seabed heights, t; and to, are determined as follows:

1 ~ D
== > S| —(w-% 2.
1 = S, <wp 2> (6.2.6)

imin—1
1 min ~ D
=|% Z;Si - <wp — 5) (6.2.7)

where 7 is the number of columns over which the average is taken. n was chosen as the closest integer
value to D/s,, that is, the average was taken over a length of approximately D either side of the pipe.
The key advantage of this formulation is that it accounts, in a unified way, for berm accretion and the
formation of recesses behind the pipe and is completely generic to complications including the merging

of two or more berms.

6.2.2 Example run
The plots in Fig. 6.7 show the output at intermediate stages of an example run of the seabed surface
update scheme. For this example, 600 columns per diameter of lateral position were used and the run

commenced following penetration to an embedment depth of 0.2D. The updated seabed profile, and
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F1G. 6.7: Plots of the predicted seabed surface and pipe position as extracted from intermediary stages of an
example run of the surface update scheme implemented in the force-resultant model.

hence #; and f3, were then sought following the lateral (rightward) displacement of the pipe by 0.25D."

¢’ was taken as 30°.

Fig.6.7a shows the seabed surface before the pipe was moved, while Fig.6.7b is taken from an

intermediary stage of CALCULATE AREA and shows the pipe in its updated position, but without

any corrections yet applied to the seabed surface. The overlapping area to be redistributed, A, is shaded

grey. Fig.6.7c is a plot of the output from CALCULATE AREA and shows the corrected seabed surface

LAn increment of 0.25D is significantly larger than that which the update scheme would be passed by the
subroutines of the macro-element tasked with carrying out the elastic-plastic load:displacement update, but has
been used in this example to aid the clarity of the figures.
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after the removal of area, A. Since the prescribed plastic displacement increment for this example is
entirely rightward, SPLIT AREA returned: £, =1 and &_ = 0 i.e. all of A was to be redistributed to
the right of the pipe’s centre. Fig.6.7b is a plot of the output from REDISTRIBUTE. For this example,
the majority of the soil is redistributed over a length of 1D to the right of the pipe (only the small region
circled in the figure has been deposited in the voids between the soil surface and the pipe perimeter).
Figs 6.7e and 6.7f are two outputs from REPOSE CORRECTION: Fig.6.7e shows the seabed surface
resulting from the correction of slopes inclined in excess of ¢’ and located to the right of the pipe’s
centre (for this example, there are two such corrected slopes, as circled on the figure), and Fig. 6.7f shows
the seabed surface resulting from corrections to slopes located to the left of the pipe’s centre (for this
example, a portion of the hollow formed from the movement of the pipe was inclined at an angle greater
than ¢'). A comparison between Figs 6.7a and 6.7f shows the cumulative effect of the seabed surface
update scheme. Following the update, ¢; and t5 are 0.34 and 0.18 respectively (whereas before the update

their values were both 0.25).

6.2.3 Closing comments

The above scheme to update the seabed surface is central to the hardening laws. It allows the
influence of the history of the pipe displacement to be held in memory, and accessed when needed by the
algorithms (discussed subsequently) to carry out the elastic-plastic updates. However, it is important to
acknowledge that, while the set of heuristics and procedures proposed here are felt to capture the key
aspects of the redistribution of the soil across the seabed, alternative (though, similar) heuristics and

procedures could undoubtedly be conceived.

6.3 Summary of the proposed force-resultant constitutive model

Before detailing the mathematical formulation of the force-resultant plasticity model, it is in the
interests of clarity to summarise its components, as given in this and the preceding chapters. In doing
S0, it is convenient to introduce the following notation. The loads, V and H, are now grouped into a
column vector of generalised stresses, o, while the displacements, w and u, are now grouped into a column
vector of generalised strains, € (likewise, the elastic and plastic displacement components are respectively
grouped into the column vectors, €. and €p). As used earlier in the thesis, x ¢ is the column vector of
the hardening parameters (Vi, Hy, Vo and Ha), and xg4 is the column vector of the plastic potential
parameters (31, m1, G2 and 79). The application of each increment is considered to take place with
pseudo time, t, and a dot over a variable denotes its rate e.g. € is the column vector of the displacement
rates. k signifies the increment number — for example, o ;) denotes the load vector in the k" increment

— while the change in a quantity over one increment is indicated by the prefix, A.
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1. Elastic-plastic decomposition

The first component of the model is an equation which states that the total displacement rate is

decomposed into elastic and plastic portions:

é=éc+tép. (6.3.1)

2. Elasticity relationship

The second component is an equation which states that the elastic displacement rate is related to

the load rate by the elastic stiffness matrix, K:

o =Ké.. (6.3.2)

3. Yield criterion

The third component is the statement that the loads, o, and set of hardening parameters, x y, must

satisfy the yield criterion:

flo,xf) <0. (6.3.3)

In Chapters 3 and 4, f was defined as a piecewise construction of a pair of parabolas, f; and fs:

f=max(fi, f2) (3.7.1 bis.)
where:
1% 1% H
= (1-o )+ 7.2 bis.
N " ( V1> + o, (3.7.2 bis.)
1% 1% H
=—— (1= % 3.7.3 bis.
r=-i(1-%) - % (373 bis)

4. Flow rule
The fourth component is the flow rule, which specifies the relationship between the load components

at yield and the incremental plastic displacement components. As detailed in Chapter 4, the flow rule is

given as:
i, 29 for f1 =0, fo <0
oo
ép = )\2% for fo =0, <0 (4.6.3 bis.)
o
< 0 . 0
)\1ﬂ +)\zﬂ for fi = f2=0
\ do do
where g1 and g9 are the plastic potential functions:
4 v Vv H+ W :
VVH =——S(1— — + |t 4.6.4 bis.
VA (1+m)2< Vf) <"1 V{> AR ( )
4 %4 Vv H — ’)/2% .
VVH =——S(1— — + = || —-— 4.6.5 bis.
(V1) (1+1m2)° ( V2/> (772 V2/> BaVy ( )
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and (1, m, 71, B2, n2 and 2 are the non-association parameters. Values for the non-association parame-
ters were specified in §4.6.1 while V{ and VJ (the dummy variables) are found from the conditions g; = 0

and go = 0 respectively.

5. Hardening law

The final component is the hardening law, which allows updated values of the hardening parameters
(Vi, Hy, V3 and Ha) to be deduced following an increment in the plastic displacements, Aep. This update
is carried out in two stages. The first — to update the seabed surface geometry and extract values for
the parameters, t; and to — was the focus of the opening sections of this chapter. The second stage —
to look-up values for Vy, Hy, Vo and Hy from tq, t3, ¢’ and § — was addressed in Chapter 4. There, it
was noted that the associated values for the hardening parameters (Vi 4, Hi a, V2,4 and Hj 4) are first

obtained from interpolation within Table 3.4 and then adjusted according to the scheme:

Vina=CaVi,a Hina=C(pHia Vona=(cVoa Hona=(pHza, (4.6.1 bis.)

where the values for the parameters, (4 (= (¢) and (B (= (p), were given in Chapter 4. An examination
of Table 3.4 reveals that, when ¢; = 0, V; and H; are zero; likewise, when t» = 0, V, and H, are zero. The
yield function is undefined if any of V;, Hy, V5 and Hs are zero, and so, to safeguard against numerical

difficulties, ¢; and t5 were prevented from taking values less than 0.001.

6.4 Load:displacement update equations

When the force-resultant model is used within a structural analysis of the pipeline, it receives an
increment in the displacements, Ae, and is required to return updated values for the loads, o, i.e. it
functions in a displacement controlled mode. However, in the interests of generality, it is convenient to
formulate a numerical scheme to determine updated values for o and e for a prescribed increment in
either the loads, Ac, the displacements, Ae, or a component of each (e.g. V and u). By generalising
the numerical formulation of the model in this way, retrospective simulations of the experimental tests
using load control can be straightforwardly carried out using the initial MATLAB implementation (the
FORTRAN implementation was only required to handle a displacement controlled increment). The
algorithm used to carry out the load:displacement update is of the well known elastic-predictor/return-

mapping class, and consists of the following three steps.

1. Elastic predictor

In the first step, a trial solution is calculated by assuming that the entirety of the step is elastic.
Under displacement control, this assumption implies that: (Aep)" = 0 and (Aee)" = (A€), where

the superscript, tr, denotes ‘trial’. In this case, Eq.6.3.2 is trivially integrated over At (since K is
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independent of t) to give the trial solution for the load increment as:

(Ao)"™ = K (Aeo)"". (6.4.1)

Similarly, under load control (such that Ao = (Ae)™), the trial elastic displacement increment is given

as:

(Aee)” = K Ao (6.4.2)

and, as for the displacement controlled case, (Aep)" = 0 and (A€) = (Aee)"". Analogous manipulations
of the elastic relations can be straightforwardly carried out to determine the elastic predictor for a mixed

control case.

2. Yield function evaluation

The next step is the evaluation of f using the updated loads, o (;41), and the hardening parameters,
(Xf)(k)' J < 0 implies that the elastic trial solution for the loads, o 41), plots either within, or on,
the current instance of the yield surface. In this case, the elastic trial solution is accepted as the actual
solution and the following updates are applied.

€hr1) — €m + (Ae)T

O(kt1) < O(k) + (AO’)tr,
(ee)(k-i-l) - (ee)(k) + (Aee)”

while the other variables remain unchanged: (ep)(kH) — (ep)(k), (Xf)(k+1) — (Xf)(k) and (Xg)(k+1) —
(Xg)(k) . Conversely, f > 0 implies that the elastic trial solution for o ;1) plots on a contour of the yield
function lying outside the current instance of the yield surface, hence implying that plastic displacement
occurs over a portion of the step and that the elastic trial solution is invalid. In this case, the algorithm

proceeds to step 3.

3. Elastic-plastic update

In this step, corrections are computed to the elastic trial solutions for Ao and Ae€ to ensure that:
(i) the updated loads, (U)(k +1), Plot on the updated yield surface (as given by the updated values for
the hardening parameters, (Xf)(k +1))’ and (ii) that the flow rule, elastic relations and elastic-plastic
decomposition law are satisfied, in an average sense, over the increment.

Concerning the yield function, since it is defined in piecewise form, there are three possible conditions
imposed on the updated loads, (U)(k+1), and the updated hardening parameters, (Xf)(k+1)‘ The first
(denoted here as case (1)), is the condition that the updated loads must plot on the updated f; = 0

contour of the yield function:

(D) = 1 <(U)(k+1) ’ (Xf)(k+1)> = 0. (6.4.3)
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The second (denoted here as case (2)), is the condition that the updated loads must plot on the updated

f2 = 0 contour of the yield function:

() = P2 () sy » (X sy ) = O (6.4.4)
The third (denoted here as case (3)), is the condition that the updated loads plot on one of the two
apexes of the yield surface. In this case, the updated loads and hardening parameters must satisfy both
Eq.6.4.3 and Eq.6.4.4. The procedure by which the appropriate case was chosen for a given increment
is discussed in §6.5.

The flow rule (Eq.4.6.3), elastic-plastic decomposition law (Eq. 6.3.1) and elasticity relations (Eq. 6.3.2)
are rate equations and, accordingly, they must be integrated over the time increment, At, to obtain rela-
tionships between increments in the loads and displacements. For the elastic-plastic decomposition law,
integration is trivial, and gives the following exact relationship between the increments in the displace-

ment components:

Ae = Aee + Aep. (6.4.5)
Similarly, integration of the elasticity relation is also trivial since K is assumed to remain constant:
Ao = KAe,. (6.4.6)

For the flow rule, there are, like the yield function, three separate conditions to consider. For case (1),

the incremental change in the plastic displacements, Aep, must satisfy:

tr+AL
Aep = / Al%dt (6.4.7)
tr

where ¢, is the reference time at the start of the increment, and A1 is the rate form plastic multiplier
for case this case. Now, unlike the elasticity relations and the elastic-plastic decomposition law, the
evaluation of this integral is not trivial owing to the unknown variation of % over the increment and,
therefore, a numerical scheme is required to obtain an approximate solution. The forward Euler scheme,

which approximates the variation of 991 by its value at the start of the increment, is the simplest approach
Jo ’

and gives:
tr+AL 5 P tr+AL 5
_ Vo I gy~ (991 N dt = 991
Aep == / )\1 30' dt ~ <30' > (k) / Aldt (A)\l)FE (80- > (k) 5 (64:8)
tr tr

where (AAj)gpg is the forward Euler update in the plastic multiplier. Eq.6.4.8 is an explicit equation
which allows an update in Aep to be computed for a given (A\;)pg, or vice-versa, without recourse to
iteration. However, the drawbacks of the forward Euler approach concern its efficiency and stability. Since
this explicit scheme is only first-order accurate, it follows that At must be sufficiently small to ensure
that the solution varies approximately linearly over each increment. The choice of a sufficiently small At
is thus dictated by the local non-linearity of the solution, which is not known beforehand. Therefore, it

is possible that the solution could drift considerably from the true solution. To eradicate this possibility,
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Case (D Case 2 Case (3
Solution
X A€, Aep, A€e, Ao, AN | A€, Aep, A€e, Ao, A2 A€, Aep, A€e, Ao, AX1, A)
variables:
Elastic-plastic
.. Ae = Aee + Aep
decomposition:
Elastic _
. Ao = KAee
relations:
o] 0 0 o]
Flow rule: Aep = A\ <£> Aep = AXg ( 92> Aep = AN ( g1> T AXg (ﬂ)
Jdo (k+1) do (k+1) Jdo (k+1) do (k+1)
Yield criterion: (f1) g1y =0 (f2)(gs1) =0 (F)(ks1y =05 (f2) (1) =0

TABLE 6.1: Backward Euler solution variables and update equations for cases (D-3).

the error resulting from the linearization can be tested retrospectively following the completion of each
time increment (by, for example, testing the proximity of f to zero); increments which fail to meet a
prescribed tolerance can then be sub-divided and repeated. However, the necessity to sub-divide and
repeat steps is often computationally inefficient.

An alternative approach is to use the backward Euler (BE) scheme, which approximates the variation

of % over the increment by its value at the end of the increment, to give:

tr+AL
o g1 I
A€, = / )\1 dt < > / Aldt (A)\l) (— 5 (64:9)
P= Jdo (k+1) BE\ 9o (k1)

where (A){)gp is the BE update to the plastic multlpher. Eq.6.4.9 is an implicit equation since the
update between Ae€p and (AM;)pp is dependent on <%>(k+1), which is unknown at the start of the
increment. Therefore, an iterative scheme is required to obtain successive estimates to the values of Aep,
(AXi)pp and <%)(k+1) which satisfy Eq.6.4.9. Accordingly, this approach differs from the explicit
approach since (%2‘1 > (o) is updated throughout the iterations and hence non-linearity over an increment
can be accommodated. Although an explicit increment can be carried out more quickly than an implicit
increment, the larger time steps which can be accommodated using the implicit approach means that its
overall computational efficiency can often be higher. Indeed, this was very much found to the case in trial
implementations of the proposed force-resultant model and, accordingly, the implicit integration scheme

was pursued throughout all subsequent developments. The equivalent update equations for cases (2)

and (3) are respectively:

092
Ae, = (ANg) (—) (6.4.10)
P PP\ do (k-+1)

dg1 0go
A€, = (A)\l) (—) + (A)\Q) <—> . (6.4.11)
? BN (k+1) PE\ 0o (k+1)
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Table 6.1 summarises the update equations for cases (I), (2) and (3) (with the subscript, BE, on the
incremental change in the plastic multiplier dropped for brevity). The procedures to determine x s from
A€y, (the hardening law) and x4 from A€, are common to all three cases. Once a solution for Ae, Aep,
A€ and Ao was found (using the Newton-Raphson scheme discussed in the next section), the following

updates were then applied:
€(k+1) — €k T+ (Aee)tr + Ae
(ee)(k+1) A (ee)(k) + (Aee)tr + Aee

(€p) ki) — (€p)) T Aep

O(k+1) < Ok + (AO’)tlr + Ao

to obtain the final, corrected elastic-plastic solution.

6.5 Newton-Raphson (N-R) scheme for elastic-plastic updates

A Newton-Raphson (N-R) scheme was used to obtain successively closer approximations to the solu-
tions of the BE update equations listed in the second to fifth rows of Table 6.1. For a function in just one
variable — say, y (x) — the geometric interpretation of the N-R method is straightforward; namely, the
method seeks an improvement to the current estimate of a root by finding the value of x for which the
tangent to the current (z,y) point crosses the x axis. While the geometric interpretation for the multi-
variable case — as applicable to the above BE update equations — is less straightforward, the principle
is similar. Specifically, Taylor series expansions — truncated to exclude the quadratic and higher order
terms — are used to establish a series of relationships from which the corrections to the solution variables
needed to reduce the error are found. In the following, a derivation of the N-R update equations used
for case (I) are presented. The derivations for the other two cases follow analogously and, therefore,
for brevity, their results are simply stated (without derivation). The integer, i, is used in the following
to denote the iteration counter, while the prefix, d, is used to denote the correction to a variable — for
example, (o), denotes the correction to Ao in the ith iteration. It is important to note, therefore, that
the meaning of § here differs slightly from its use elsewhere in the thesis since, while the corrections are

‘small’, they are not infinitesimal.

Yield function

A first-order Taylor series expansion of f; about its value in the i*" iteration gives:

<%>T]i (o) + <§—2>T]i (Gep)" (6.5.1)

which implies that the correction terms, (§)" and (Jep)’, must satisfy:

<%>T]i (o) + (%)T]i (Gep)’ (6.5.2)

fi+of=fi+

0= fi+
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to give fi = 0, as desired, at the end of the i*" iteration.

Flow rule
The BE integrated form of the flow rule, Eq. 6.4.9, is only satisfied once a converged solution for Ae,
and A\ is found. Therefore, it is convenient to introduce the residual vector, r, given as:

g1
= Aep, — A - 5.
r €p A1 <80’ > - (6.5.3)

to provide a measure of the flow rule error (that is, the proximity with which Aep and A); satisfy the
flow rule over the increment). On taking a first-order Taylor series expansion of r about its value in the

ith iteration, the following is obtained:

i s i i i (991’ g1\ < i g ' i
r + 51’ =TI + (661)) — (5)\) (5) — A)\l (W (60) + aaaep (661)) s (654)
which implies that the correction terms: (do)’ and (Jep)" must satisfy:
; ; (991’ 9%g1 ' ; g1\’ ;
— (2 T 2 —JL _ A - JL 7 K 5.
0=r"+ (dep)" — (0N) <80’> A1 [(80’2 (0o)" + dode, (0€p) (6.5.5)

to give a zero residual vector in the " iteration.

Elastic relations

Since the stiffness matrix, K, is assumed, for simplicity, to be constant, corrections to the loads and

the elastic displacements are satisfied exactly according to:

(60) = K (Jee)" . (6.5.6)

Elastic-plastic decomposition

Likewise, corrections to displacement components satisfy the elastic-decomposition law exactly:

(de)" = (dee)’ + (Jep)" - (6.5.7)

Return-mapping procedures

Eqgs 6.5.2 and 6.5.5-6.5.7 are a system of seven equations in nine correction terms: (5V)®, (6H)®,
(6w) @ | (6u) D (Swe) D, (Sue)D, (wy) @, (dup) @, 6A;. Under the restriction to a particular loading
regime, two of these correction terms are zero (since their increments are prescribed and, hence, they are
not permitted to change); for example, under displacement control, (dw)® = (5u)®) = 0, while under
load control, (§V)® = (§H)® = 0. This reduces the number of unknown correction terms by two, such
that a solution can be computed. Accordingly, manipulation of Eqs 6.5.2 and 6.5.5-6.5.7 can readily be
carried out to eliminate (Jw.)®, (due)®, (dw,) @, (Su,)?, 6A; and, depending on prescribed control
mode, two of (dw)@, (6u)®, (§V)® and (§H)®. Indeed, this manipulation was carried out and coded
within the macro-element. However, since the results are lengthy, it is more convenient to present the

N-R update equations in matrix form, as follows. For cases (1), 2) and (3), the system of N-R update
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equations are respectively given as:
R, =N;OC; @, (6.5.8)
Ry = Ny ¢y, (6.5.9)
R3) = N3 C3®. (6.5.10)

Here, R1?¥, R

iteration:

Rl(i):[fl 0 0 m 7“2}

R, =

R3() =

T

[fz 00 nr T2}T

{fl Jo 00 T2}T

2@ and Rg® are residual (or ‘out-of-balance’) column vectors from the previous N-R

where r; and ry are the entries of r and Cl(i), Cz(i) and C3(i) are the correction terms to be found:

‘ T
C,;® = [ incy incy dw, Ouy 5)\1}

‘ T
Cy, = [ incy incy Odw, Ouy 5)\2}

. T
C3(Z):[incl incy Odw, Ou, 0N 5)\2}

where inc; and ince are the corrections in two of the four load and displacement variables (w, u, V

and H) which are not controlled. Nl(i) and Nz(i) are bx5 matrices of coefficients while Ng(i) is the

6x6 counterpart for case (3) (the return to the apex of the yield surface). The entries to each of these

matrices are given below, depending upon the solution control mode.

1. Displacement control: inc; =6V, incy = 6H, dw =0, du =0

_Ofm _Ofm _ Ofm
oV 0H Owp
1 0 kvaw
7 a2gm o O"9m_ 9? _O79m
AAm ov?2 A)\m OVOH A)\m OV owp
9%g 9%g 9%g
| Adngrenr Admir Alngmoe,
B 9f1 of ofr
oV oOH " Owp
9f2 Ofa Ofa
oV OH " Ow,
1 0 ka
0 1 kiw
2 2 )
0%g 0%g 0%g
ZA)\T 8\/5 ZA)\T 8\/8?{ ZA)‘T 8V81Z
r=1 r=1
2 2 2 2
Ie} Jr 0 gr 8 gr
> Ahgrdr D ANG ZAM i
L r=1 r=1 r=1

_Ofm

Ouyp

k\/u

kHu

-1 A

Ay ot

M OH Juy

-5
U
_0fs

" Ouyp
kVu
kHu

2
8291"
ZAN e

ZA)‘T a%gl}

02 gm
m oV ouyp

-1
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2. Load control: inc; = dw, incg = du, 6V =0, 6H =0

_9fm O fm ]
0 0 ~ Dy ~ By 0
ke —kva v kv 0
Nmo12= | “kow —knu kgw by ;
0 Mg =1 Mg G
| 0 A)‘mangp A 8H?9u -1 OH |
- of of ]
0 0 — o ~ 0 0
_ka _k\/u ka k\/u 0 0
_kHw _kHu kHw kHu 0 0
N3 = 2 2
82g, 92g, 2] 2]
0 0 ZA)‘T‘ avagw -1 ZA)‘T’ avgu % ﬁ
r=1
2
82g, 02 gy o) o)
0 0 ZA)\T‘ aHagw ZA)‘T Bng 8_% 3_%
3. Mixed control: inc; = dw, inco =6H, 6V =0, du =0
r Bfm afm afm ]
0 — oI ~Ow, ~ Oup !
—kyy 0 kv kv 0
Nme12= | —FHw 1 Kw ki 0
a m 8 m 8 m Ogm
0 Adngvanr Admgvaw, — 1 Admgvge, v
0 A % 7 Adn a%%lﬁ Adm aaHga"L 1 S |
_ 9 o 0 T
0 _ok —op o 0 0
—kvw 0 kvw kyu 0 0
i 1 K o Kk U
N3 = , 2
O - 8 s 8 r 0 0
0 ZA)\rﬁ ZAAT‘ BVBQw - ZA)‘T 8Vgu 8_%/1 3_%3
2
92g, 82%g, 8%g, 0 0
0 ZA)\ra—b‘?g ZA)\T‘ aHagw ZA)‘T 8ng - 8_51]“} (9_51]52[

Since the hardening and plastic potential parameters depend on ¢; and t5 (for which updated values
can not be determined analytically), all partial derivatives with respect to w, or u, were evaluated
approximately by means of numerical perturbations. For all three return-mapping cases, the corrections,
incy and incy, following each N-R iteration were added to those from any previous iterations to give the
total incremental changes. These were then used to evaluate the yield function, f, and the Euclidean
norm of the residual, \/m Convergence to a final solution was accepted when the magnitudes of
these quantities reduced below some small values (typically, 1x1075).

The choice as to which of the three return-mapping cases should be used for a given increment was
made as follows. For an increment with either a positive horizontal displacement or a positive horizontal
load component, the update equations for case (I) were first used to obtain a solution for a return to the

smooth, f; = 0 portion of the yield surface. The suitability of this solution was then tested by evaluating
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fo; if fo was found to be less than or equal to zero, the solution was accepted, otherwise if fo was found
to be greater than zero, the solution was rejected (since fo > 0 implies f > 0, such that the updated
loads plot outside of the updated yield surface). In this latter case, the elastic-plastic solution correction
was repeated to give updated loads which plot on an apex of the updated yield surface (using the update
equations for case (3)). For an increment with either a negative horizontal displacement component or a
negative horizontal load component, the same procedure was used expect that a return to the smooth,
f2 = 0 portion of the curve was first attempted (using case (2)), and if this solution was found to be be
inappropriate (by testing whether or not f; < 0), the update equations for case (3) were then used to

give the return to an apex.

Pre-emptive bisection algorithm

Due to a lack of smoothness in the hardening laws, the N-R scheme outlined in the preceding section
was found to be unstable if the prescribed increment size exceeded a certain value. While a sufficiently
small time step could inevitably have been found to preserve stability, the use of smaller time steps
was found to have a detrimental impact on efficiency. Accordingly, an alternative approach to improve
the stability of the N-R scheme was sought. The chosen approach was to use a pre-emptive bisection
algorithm to find starting estimates to the loads and displacements within closer proximity to the final
elastic-plastic solution. This bisection algorithm operated as follows. The total displacement increment
was first split into two halves, one elastic and the other plastic. Then, the hardening parameters and
loads were updated in accordance with the hardening laws and elasticity relations, respectively. Next, the
updated loads were tested to ascertain whether or not they plot outside of the (updated) yield surface.
If so, at least half of the displacement increment was known to be plastic, and the updated values for
the hardening parameters and loads were accepted as more refined starting estimates. Otherwise, at
least half of the displacement increment was known to be elastic, in which case, it was appropriate to
accept the original displacement increment as the starting estimate. For the former case, the plastic
half of the increment was then, itself, divided into two halves — again, one elastic and one plastic —
and the updates to the hardening parameters and loads repeated. If the new updated loads were still
found to plot outside the (updated) yield surface, then it was known that at least three-quarters of the
original displacement increment was plastic. Otherwise, at least one-quarter of the original displacement
increment was known to be elastic and, accordingly, the loads and hardening parameters accepted for the
starting estimates were those corresponding to the assertion that half of the displacement increment was
elastic. This process of bisecting the remaining plastic portion into elastic and plastic halves, and testing
the proximity of the loads to the updated yield surface was repeated a further ten times. The stability
of the elastic-plastic update algorithm, as outlined above, was found to be improved substantially by the

use of the above bisection algorithm.
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6.6 Consistent tangent stiffness matrix

When the force-resultant model is implemented as a macro-element in a structural analysis, the
global equilibrium iterations (which typically also make use of the N-R method) require an estimate
of the contribution to the global stiffness matrix made by each instance of the macro-element. If the
displacement increment passed to a particular macro-element instance is found to be entirely elastic,
then the elastic stiffness matrix is returned. However, if a portion of the displacement increment is
plastic, then a stiffness matrix representative of the non-linear variation of load with displacement over
the increment is required. Like in the continuum FE analyses reported in Chapter 4, the formulation
of this elastic-plastic stiffness matrix is, to some extent, a matter of choice for the user. For example,
the elastic stiffness matrix, K, could be preserved for all iterations, in which case accuracy (and, hence,
efficiency) is exchanged for simplicity, yet maintaining robustness. However, as explained in the context
of continuum constitutive models in the seminal paper of Simo & Taylor [134], the better choice, in terms

of efficiency, is to use the so-called consistent tangent stiffness matrix (CTSM), given as:

_ AAV)/o(Aaw)  HAV)/o(Aw)
K, = 080/one = . (6.6.1)

IHAH)[o(Aaw)  O(AH)[o(Au)
The term ‘consistent’ implies that the procedure to formulate the stiffness matrix is the same as that used
to linearize the rate equations over the increment in order to attain the load:displacement update. Hence,
the four derivatives in the above matrix were required to be evaluated at the end of the increment. Now,
on taking 71 and/or 7o and f; and/or f2 as zero (as is appropriate at the end of a converged increment
owing to the fact that the prescribed tolerances were set to be close to zero), Eqs 6.5.2, 6.5.5-6.5.7 provide

relationships between the nine corrections terms: 0V, 0H, dw, du, dwe, due, dwy, d0uy, dA; for case (T).

On manipulating these to eliminate: dwe, due, dwy, dup, A1, a pair of equations of the form:
oV = a110w + ardu (6.6.2)
0H = a910w + asdu. (6.6.3)
is readily derived, where a11, a12, ao; and age are, respectively, the required approximations to 9AV/gAw,
OAV [onu, OAH [gaw and OAH/oAu at the end of the increment. Analytical expressions for ajy, a2, ao

and ago were derived and implemented in the force-resultant model, although since the expressions are

lengthy, they are not presented here.

6.7 Retrospective simulations of the experimental tests

6.7.1 Introduction
In Chapter 5, the results of an experimental programme were presented and discussed. This exper-
imental programme was divided into two strands; the purpose of the first strand (the swipe, loop and

probe tests) was to generate data to validate the numerically-derived components of the force-resultant
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model, while the purpose of the second strand was to measure the evolution of w and H during a test in
which V' was held constant as the pipe element was cycled between prescribed limits of u (the ‘constant
V7 tests). In the following, the results of a series of simulations carried out using the proposed model are
presented. For these simulations, the inputs were taken as smoothed versions of the recorded histories of
the controlled variables of Tests CV1, CL1 and DCP. Agreement between the predicted and measured
(i.e. non-controlled) loads and displacements demonstrates that the force-resultant model is capable of
predicting realistic load:displacement paths. Using the actual recorded histories of the controlled vari-
ables as the inputs to the simulations — as opposed to their requested values — enabled any deviations
due to control inadequacies to be accounted for appropriately. In the figures presented subsequently,
loads and displacements are plotted in laboratory scale units (using N and mm respectively for loads
and displacements, and taking D = 50mm, Lp = 250mm, and 4" = 15.1kN/m3 for Test CV1 and
7 = 15.0kN/m? for Tests DCP and CL1). As appropriate, ¢/ was taken as 37.3° for Test CV1 and
35.6° for Tests CL1 and DCP. In all cases, § was taken as 0.535¢’, as deemed suitable for a smooth
steel /sand interface. ky,, and kg, were taken as 2000kPa, and the cross-coupling terms in the elastic
stiffness matrix (ky, and kg, ) were taken as zero. The simulations were carried out with the soil array,

S, having 300 columns per pipe diameter.

6.7.2 Test CV1

Figs 6.8, 6.9 and 6.10 show, respectively, comparisons between the experimentally-derived data and
the model predictions for the first, second and third lateral displacement cycles undertaken in Test CV1.
The upper portions of these figures are divided by dashed lines into four quadrants, one for each of the
spaces: V:H, V:w, u:H and w:w. In each quadrant, there are two plots; one showing the experimental
data and the other showing the model prediction. Circular markers — labelled A-P for the experimental
test and A’-P’ for the model simulation — are included on the w:H and w:w plots. These tally with
the plots in the lower portions of Figs 6.8, 6.9 and 6.10, which show the predicted and recorded seabed
surfaces at equivalent points during the test/simulation. As in Chapter 5, those load and displacement
paths involving leftward movement are shown in bold.

Over the first cycle, the comparison in Fig. 6.8 shows acceptable agreement between the two plots in
u:H space. In particular, the model predicts the correct value of H to initiate plastic lateral displacement
and also captures the increase in H with u due to berm accretion during rightward displacement. The
plot in u:w space reveals that slight uplift is initially predicted by the model over the first 50mm of lateral
displacement, whereas the experimental data shows the pipe’s trajectory to be approximately horizontal
over the same portion of the test. Also, over the final 50mm of lateral displacement, the model predicts
a small amount of penetration before levelling out whereas progressive upward movement was observed

experimentally. However, despite these slight discrepancies, the broad trends in the experimental results
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are captured by the model. The predicted and observed seabed surfaces for positions A (A’) and B
(B’) are also similar to each other, although for position C (C’), the height of the berm is predicted
to be smaller than that observed experimentally. On reversing the direction of lateral displacement,
the model correctly predicts a stiff elastic response followed by a substantial increase in penetration,
then a gradual increase in the magnitude of H with u. Indeed, the load:displacement paths in u : H
space during leftward displacement are remarkably similar. The trajectory observed experimentally was
a concave upward curve in u : w space, whereas a slightly undulating profile was predicted by the model.
Nevertheless, the model’s prediction of the evolution of the seabed surface, as shown in the figure at
positions D (D), E (E’) and F (F’), agrees satisfactorily with the observed data. Importantly, the model
has retained ‘knowledge’ of the berm deposited at the leftmost lateral displacement extremity, due to
the initial penetration.

Over the outward leg of the second lateral displacement cycle (see Fig.6.9), the plots in u:H space
are very similar, identifying that the key trends observed experimentally are captured by the model.
As in the experiment, relatively low H was predicted over the first ~ 50mm of lateral displacement,
however, on encountering the berm deposited at the rightmost lateral displacement extremity, both
the model prediction and experimental data show a substantial rise in H. It is noteworthy that the
model’s procedure for storing and updating the seabed allows the influence of the berm to be accounted
for gradually, rather than as a sudden step change. The predicted and observed pipe trajectories over
the outward leg of this second cycle are also similar to one other. The model correctly predicts slight
penetration to accompany lateral displacement over the ~ 50mm of lateral movement, after which the
pipe is predicted to displace upward. A comparison between the surface profiles for positions G (G’),
H (H’) and I (I’) shows that, although the shape of the berm which is predicted to accumulate ahead
of the pipe differs from that observed experimentally, the seabed surfaces formed behind the pipe are
very similar (as is important to allow for realistic predictions in subsequent lateral displacement cycles).
Some initial penetration was both predicted and observed at the start of the return leg, but whereas the
model predicts continual penetration over the entirety of the leg, some upward movement was observed
experimentally over the final 50mm of travel. Despite this discrepancy, the plots in u:H space are very
similar to each other; importantly, the increase in the magnitude of H on encountering the berm formed
at the leftmost lateral displacement extremity — see the soil surface profiles at positions K (K’) and L(L’)
— is predicted correctly.

In the third lateral displacement cycle (see Fig.6.10), although the shapes of the predicted and
observed u:H hysteresis loops are similar to each other, the peak H predicted by the model towards
the end of rightward leg of this cycle is lower than the corresponding experimental value. The plots in
w:w space also differ somewhat since the model fails to predict sufficient upward movement on reaching

the berms. Accordingly, at the end of the simulation the pipe is predicted to have undergone greater
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penetration than that observed experimentally. The surface profiles at positions M (M’), N (N’) and O
(O?) also show the formation of larger berms owing to the greater penetration experienced. Indeed, at
position O’ a berm of sufficient height to over-top the pipe is predicted (even though no such means to

allow for over-topping was included in the soil surface geometry update).

6.7.3 Test CL1

Figs 6.11a and 6.11b respectively show the experimental results and the retrospective model prediction
for the constant elevation lateral displacement undertaken prior to the looping portions of Test CL1. A
comparison between these two figures reveals that the model has captured qualitatively the key trends
observed experimentally. In particular, the model correctly predicts that — as in a swipe test — the (V, H)
load path tracks closely along the instance of the yield surface formed from the initial penetration. On
continuing lateral displacement to 100mm (2D), the model also correctly predicts the gradual increase
in H, although the peak value at the end of this portion of the test is predicted to be lower than
that measured experimentally. The plot in V:H space shows that the fluctuations in V' during lateral
displacement are of higher magnitude than those observed experimentally. These fluctuations arise
because, as the yield surface reduces in size (and becomes confined to the positive V', positive H quadrant
of the V:H plane) the parallel point shifts slightly.

Figs 6.12a and 6.12b show respectively the experimental results and the retrospective model prediction
for the last of the eight loops (with nominal radius of 2.6mm) carried out in the test. For simplicity,
the model simulation of the eighth loop of the test was carried out immediately after the 100mm of
lateral displacement was undertaken, and thus the influence of the intervening history of displacement
is assumed negligible. In general, comparisons between the V:H, V:w and u:H plots show acceptable
agreement. In particular, the model correctly predicts V' to increase over a—d (while the pipe was
undergoing penetration). However, it is noticeable that from b—c, the model predicts a sharp change
in the gradient of the curve in V:H space, whereas in the experimental results, such a sharp change is
absent. From d—e, when the pipe was moving predominantly laterally, the model correctly predicts the
attainment of a peak in H of the appropriate magnitude (see the plots in u: H space). Also, from f—g—h,
when the pipe was undergoing upward movement, the model prediction and experimental results both

show the (V, H) load point to be located close to the origin.

6.7.4 Test DCP

Figs 6.13a and 6.13b show respectively the experimental results and the retrospective model prediction
for the constant elevation lateral displacement undertaken prior to the probing portions of Test DCP.
The predicted response is again similar to the experimental results, although — as was also the case
for Test CL1 — the peak H after the pipe had been displaced by 100mm is predicted to be less than

that observed experimentally. Fig.6.14 shows a comparison between the predicted and measured seabed
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Fic. 6.11: Comparison between the observed data from Test CL1 (prior to the looping portions of the test)
and the retrospective prediction made by the force-resultant model.




Chapter 6: Numerical formulation and implementation of the force-resultant model 248

(a) observed

R 0.3
~ 02} —~ 0.2
: :
g 0.1+ % 0.1
By 0% ) 0
0.1 Lo : : : S S S S S A S S
0 0.2 0.4 0.6 —-5—-4-3-2-1 0 1 2 3 4 5
V (N/mm) u (mm)
0+t 0t
~ 1t ~ 1t
£ 2y £ 2|
3 3 3 37
4 41
0 0.2 0.4 0.6 —-5—-4-3-2-1 0 1 2 3 4 5
V (N/mm) u (mm)
‘ (b) predicted
03— 0.3
~ 02t —~ 0.2
§ 0.1¢-: % 0.1
T Oy =0
—0.1 S T S S S A S S
—5—-4-3-2-1 0 1 2 3 4 5
0l 0l
: : 2
3 3
4 41
0 0.2 0.4 0.6 —-5-4-3-2-1 0 1 2 3 4 5
V (N/mm) u (mm)

F1G. 6.12: Comparison between the experimental data for Loop 8 of Test CL1 and the retrospective prediction
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surfaces at end of the 100mm of lateral displacement. While the dimensions of the predicted berm are
not precisely correct (the width is too high and the height is too low), the overall shapes of the seabed
surfaces are similar.

Fig.6.15a and 6.15b show respectively the experimental results and the retrospective model predic-
tion for the six displacement-controlled probes carried out in the test. In general, the shapes of the
load:displacement curves (in both u:H and w:V spaces) are similar. In particular, the prediction for the
70° probe closely matches the experimental data. The model also correctly predicts the attainment of
constant H with increasing u for both the 5° and 15° probes. Likewise, for the 150° probe, the model
correctly predicts ongoing plastic displacement to occur with minimal change in the loads. There are
discrepancies however. In particular, the peak H at the end of the 5° and 15° probes is predicted to
be lower than that observed in the experiments. Also, for all the probes, the peak V values are under
predicted. This discrepancy is likely to be because, while the model only accounts for hardening due to
changes in the geometry of the seabed, in practice, hardening can arise from an increase in the density
of the underlying soil. Also, at very low stress levels such as those present during this test, the measured
load path resulting from a displacement-controlled probe will be very sensitive to the dilatancy of the

soil.

6.8 Concluding comments

In this chapter, the formulation of the proposed force-resultant model was completed by developing
the heuristics and procedures used to account for the evolution of the seabed surface. Following this,
the mathematical formulation of the model was outlined, including details of the implementation of a
backward Euler (BE) load update for elastic-plastic increments. Finally, some retrospective simulations
were presented and discussed, so as to assess the predictive capabilities of the model. In general, the
predictions of the model were found to give good qualitative and reasonable quantitative agreement with
the experimental results, thus providing confidence in its predictive capabilities and justifying its use in

structural analyses of the type to be described in the next chapter.
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Fic. 6.13: Comparison between the observed data from Test DCP (prior to the probing portions of the test)
and the retrospective prediction made by the force-resultant model.
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F1G. 6.14: Comparison between the observed test-bed surface in Test DCP and the retrospective prediction
made by the force-resultant model.
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Fi1c. 6.15: Comparison between the observed data from Test DCP and the retrospective prediction made by
the force-resultant model.
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Structural analyses incorporating the
force-resultant model

7.1 Introduction

Thus far, the thesis has reported the development and calibration of a force-resultant model for on-
bottom pipes on drained sand. Retrospective simulations to test its performance against experimentally-
derived data have also been described. This chapter reports the implementation of the model as a
macro-element in a structural analysis of an on-bottom pipe using Abaqus. The results of two example
simulations, denoted herein as Test A and Test B, are then presented. These simulations are represen-
tative of those carried out in industry, and thus demonstrate that the proposed model can be used for

realistic analysis cases.

7.2 Pipeline structural analyses in Abaqus

7.2.1 Abaqus input (.inp) files

At various junctures in the subsequent discussion, reference will be made to the commented and
abridged Abaqus input (.inp) file shown on pages 253-254. Square brackets | | enclose portions applicable
only to Test A while braces { } enclose portions applicable only to Test B; the unbracketed portions are

common to both tests.

7.2.2 User-defined ELements (UELs)

Abaqus’s User-ELement (UEL) facility enables a bespoke element definition to be written in a generic
way and, as such, allows for the straightforward inclusion of the proposed force-resultant model in a
structural analysis. When the UEL is called, it is passed increments in the displacements (here, jw and
ou) as well as the state of the solution at the start of the increment. It is then required to carry out two
tasks; the first is to compute updated values for the loads (V and H) at the end of the increment and
the second to return the updated 2x2 stiffness (Jacobian) matrix, as needed for the global equilibrium

iterations. Internally, Abaqus handles the scheduling of calls to each instance of the UEL, including the



Chapter 7: Structural analyses incorporating the force-resultant model 253

Test A Test B Abaqus card/data line Comment

line no. line no.

1 1 *HEADING

2 2 Temperature induced buckling simulations Set heading for the analysis

NODAL COORDINATES AND CONNECTIVITY

3 3 *NODE, NSET=nod Set nodal coordinates; group nodes in set: nod

4 4 [, 0.00000, 0.00000] {1, 0.00000, 150.00000} node number, Y value, X value

5 5 [2, 2.50000, 0.00000] {2, 2.50000, 149.99375} node number, Y value, X value

6...402 6...202 .

403 203 [400, 997.50000, 0.00000] {200, 497.50000, 0.91071}  node number, Y value, X value

404 204 [401, 1000.00000, 0.00000] {200, 500.00000, 0.00000}  node number, Y value, X value

405 205 *NSET, NSET=end node Denote first node as: end node

406 206 1

407 207 *NSET, NSET=print _nodes Group selected nodes in set: print_nodes

408 N/A [50, 150, 200, 250, 300, 350, 400, 401]

N/A 208 {2,20,40,60,80,100,120}

409 209 *ELEMENT, TYPE=B33 Generate first element

410 210 1,1,2 Element number, start node, end node

411 211 *ELGEN, ELSET=elt1 Generate remaining beam elements, group in eltl

412 212 [1, 400] {1, 200}

SECTION GEOMETRY AND PROPERTIES

413 213 *BEAM SECTION, ELSET=elt1, Assign section properties to eltl elements
SECTION=PIPE,...
MATERIAL=MAT

414 214 0.50000, 0.04000 Pipe geometry: 7o, t

415 215 0.0, 1.0, 0.0 Beam normal vector [n1 na n3|

416 216 8 Number of integration points

417 217 *MATERIAL, NAME=MAT Specify the wall material properties

418 218 *ELASTIC Elastic properties:

419 219 210000.000000, 0.300000 E,v

420 220 *PLASTIC Plastic properties:

421 221 448.969584541063 Uniaxial yield stress, oy

422 222 *EXPANSION Thermal expansion properties:

423 223 0.000012 Coefficient of thermal expansion, «

INCLUDE USER-ELEMENT

424 224 *USER ELEMENT, TYPE=U1, NODES=1,... Include user element;
COORDINATES=3,... maximum number of coordinates needed;
PROPERTIES=9... number of PROPS entries;
VARIABLES=10420 number of SVARS entries

425 225 2,3 Specify active DOFS for user-element

426 226 *UEL PROPERTY, ELSET—clt2

427 227 0.500, 5.000, 0.625, 0.500, 0.000, 35.000, 0.0051, User-element properties; see Table 7.2
19.005

428 228 0.075

429 229 *ELEMENT, TYPE=U1 Generate first instance of the user-element

430 230 1001, 2

431 231 *ELGEN, ELSET=elt2 Generate remaining user-element instances

432 232 [1o01, 200, 2] {1001, 100, 2 } Add the user-element at every 2nd pipe node

BOUNDARY CONDITIONS

433 233 *BOUNDARY

434 N/A [1, 1, 6] [Encastré support at node 1]

N/A 234 {1,1,1} {Prevent axial displacement at node 1}

N/A 235 {1,4,6} {Prevent rotations at node 401}

435 N/A [401, 1, 1] [Prevent axial displacement at node 401]

436 236 {201,1,2} {Prevent axial and lateral displacements at node

201}

437 N/A [401, 4, 6] [Prevent rotations at node 401]

N/A 237 {201,4,6} {Prevent rotations at node 201}

STEP 1- GRAVITY LOADING

438 238 *RESTART, WRITE, FREQUENCY=100000 Write restart files at end of the analysis step

439 239 *STEP, NLGEOM,. .. Start step; account for non-linear geometry;
INC=10000,. .. set maximum number of increments;
UNSYMM=YES request full stiffness matrix storage

440 240 *STATIC Specify analysis as static

441 241 0.5, 1.0, , 1 Specify time incrementation

Commented and abridged Abaqus .inp files for Tests A and B (continued over).
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Test A Test B Abaqus card/data line Comment

line no. line no.

442 242 *DLOAD Apply gravity loading

443 243 eltl, PZ, -0.002 Set per-unit-length submerged pipe weight:

2kN/m

444 244 *OUTPUT, FIELD, FREQ=1 Field output:

445 245 *NODE OUTPUT, NSET=nod Specify nodal outputs for node set: nod

446 246 U {,VF} Request displacements {and viscous forces}

447 247 *ELEMENT OUTPUT, ELSET=eltl Specify element outputs for element set: eltl

448 248 S, E, PE Request stresses, strains, plastic strains

449 249 *OUTPUT, HISTORY, FREQ=1 History output:

450 250 *NODE OUTPUT, NSET=print_nodes Specify nodal outputs for node set: print nodes

451 251 U Request displacements

452 252 *NODE OUTPUT, NSET=end node Specify nodal outputs for node set: end node

453 253 RF Request reaction forces

454 254 *END STEP End step

[STEP 2- LATERAL LOADING TO INDUCE INITIAL IMPERFECTION]

455 N/A [*STEP, NLGEOM,... | [Start step; account for non-linear geometry;
INC=10000,. .. set maximum number of increments;
UNSYMM=YES] request full stiffness matrix storage|

456 N/A [*STATIC] [Specify analysis as static|

457 N/A [0.01, 1.0, , 0.05] [Specify time incrementation]

458 N/A [*BOUNDARY, OP=MOD] [Modify existing node positions]

459 N/A [381, 2, 2, 0.000000] [node number, first DOF, last DOF, magnitude]

460 N/A [382, 2, 2, 0.003078] [node number, first DOF, last DOF, magnitude]

461. ..478 N/A :

479 N/A [400, 2, 2, 0.49195278] [node number, first DOF, last DOF, magnitude]

480 N/A [401, 2, 2, 0.495] [node number, first DOF, last DOF, magnitude]

481...490 N/A [Same as lines 444. ..453] [Output request]

491 N/A [*END STEP] [End step]

[STEP 3- LATERAL LOADING TO REDUCE INITIAL IMPERFECTION)

492 N/A [*STEP, NLGEOM,,... [Start step; account for non-linear geometry;
INC=10000,. .. set maximum number of increments;
UNSYMM=YES] request full stiffness matrix storage]

493 N/A [*STATIC] [Specify analysis as static|

494 N/A [0.01, 1.0, , 0.05] [Specify time incrementation]

495 N/A [*BOUNDARY, OP=MOD] [Modify existing node positions]

496 N/A [381, 2, 2, 0.000000] [node number, first DOF, last DOF, magnitude]

497 N/A [382, 2, 2, 0.003078] [node number, first DOF, last DOF, magnitude]

498...515 N/A :

516 N/A [400, 2, 2, 0.49195278] [node number, first DOF, last DOF, magnitude]

517 N/A [401, 2, 2, 0.495] [node number, first DOF, last DOF, magnitude]

518...527 N/A [Same as lines 444. . .453] [Output request|

528 N/A [*END STEP] [End step]

[STEP 4] {STEP 2} - TEMPERATURE INCREASE

529 255 *STEP, NLGEOM,,. .. Start step; account for non-linear geometry;
INC=10000,. .. set maximum number of increments;
UNSYMM=YES request full stiffness matrix storage

530 256 *CONTROLS, PARAMETERS=FIELD, Modify solution controls for translational DOFS
FIELD=DISPLACEMENT

531 257 R

532 258 ,1e-3,1e-4

533 259 *CONTROLS, PARAMETERS=FIELD, Modify solution controls for rotational DOFS
FIELD=ROTATION

534 260 ,2

535 261 *TEMPERATURE Increase temperature

536 262 nod,175.000000 apply temperature increase of 175°C magnitude

uniformly over the pipeline
537...546 263...272 [Same as lines 444...453]{Same as lines 244...253} Output request
547 273 *END STEP End step

[STEPS 5, 7] {STEPS 3, 5,7, 9, 11, 13, 15, 17, 19, 21}
These steps were exact copies of [STEP 4] {STEP 2} except that the “nod, 175.00” entry on the line [536] {262} was

replaced by “nod, 0.00”.

[STEP 6] {STEPS 4, 6, 8 , 10, 12, 14, 16, 18, 20, 22}
These steps were exact copies of [STEP 4|{STEP 2}.

Commented and abridged Abaqus .inp files for Tests A and B (continued).

254
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Variable Description Data type Dimension [Size]
DU Incremental displacements (dw and du) Floating point 11[2]

RHS Loads (V and H) Floating point 12
AMATRX | Element stiffness (Jacobian) matrix Floating point 22, 2]
PROPS Element property constants (see Table 7.2) Floating point 119]
NPROPS | Number of element property constants Integer 1[1]
SVARS State dependent variables (see Table 7.3) Floating point 1[N +20]
NSVARS | Number of state dependent variables Integer 1[1]
KSTEP Current loading step number Integer 1[1]
KINC Increment number within the current analysis step | Integer 1[1]
JELEM Current element number Integer 1[1]
TIME Current step time and total time Floating point 11[2]

TABLE 7.1: Input/output variables of the UEL subroutine.

process of maintaining a record of the state of the solution at the start of each increment in the event that
the global equilibrium iterations fail to converge (such that the increment must then be re-attempted
using a smaller time step).

The UEL facility is intended for use in a wide variety of applications and, as such, it makes use of
some 36 input/output variables. For the implementation of the force-resultant model reported here, only
the 11 variables listed in Table 7.1 were relevant. The key input variable was DU — the array containing
the displacement increments, while the key output variables were: (i) RHS — the array containing the
loads (V and H), and (ii) AMATRX - the array containing the macro-element’s 2x2 stiffness matrix.
RHS was used to formulate the element’s contribution to the right hand side (or residual) vector in the
system of global equilibrium equations, while AMATRX was used to assemble its contribution to the
global stiffness matrix.

Two other important input/output variables were PROPS and SVARS. PROPS was used to pass a
list of user-defined element properties to the UEL. Table 7.2 lists the physical meaning of each of the
nine PROPS entries used for the test problems, and the values of these parameters were specified under
the *UEL property card in the input file. SVARS contained, for each instance of the user-element, a
record of the state dependent variables (that is, variables whose values were updated within the UEL).
Table 7.3 lists the NV 4+ 20 SVARS entries used in the test problems.

The remaining input/output variables, KINC, KSTEP, JELEM and TIME, were used to aid solution
control and to schedule the writing of output to a text file. For example, when KSTEP and KINC were
both read in as 1 (i.e. at the start of an analysis), special initialisation procedures were called to simulate

the penetration of the pipe to a prescribed starting embedment depth. Also, for pre-selected elements (as
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Entry | Parameter Symbol | Units

1 Outer pipe radius To m

2 Pipe element length — m

3 Dimensionless vertical stiffness factor kv —

4 Dimensionless horizontal stiffness factor ki —

5 Dimensionless cross-coupling stiffness factor | kg, -

6 Internal angle of friction ¢’ °

7 Effective soil weight 5 MPa/m?
8 Pipe/soil interface friction angle 0 °

9 Initial vertical penetration - m

TABLE 7.2: Entries to the PROPS array.

Entry Parameter Symbol Units
1-2 Loads V,H MN/m
3—4 Total displacement components w, U m
5—6 Plastic displacement components Wp, Up m
7—8 Current (x, z) coordinates of pipe centre - m

9 Empty — -
10—11 Average soil heights t1, to m
12—15 Current values of hardening parameters Vi, Hy, Vo, Hy | MN/m
16—19 Current values of non-association parameters | (1, 71, B2, 72 -

20— N+20 | Seabed column heights - m

TABLE 7.3: Entries to the SVARS array.

specified by the value of JELEM), output from the UEL was written to file at intermediate step-times

(as specified by the value of first entry of the TIME array).!

7.2.3 Abaqus procedures

Element choice

Euler-Bernoulli beam theory assumes that plane sections initially normal to the beam axis remain
plane and normal to the beam axis [18|. This assumption is appropriate to slender members such as
pipelines, for which the effect of shear loading is not significant. Accordingly, in the two test prob-
lems discussed subsequently, beam elements formulated under the assumptions of Euler-Bernoulli beam
theory were used. Specifically, cubic Euler-Bernoulli beam elements were chosen, as requested by the

TYPE=B33 option on the *ELEMENT card (see lines [409]/{209} of the input file).

Geometric non-linearity

As discussed earlier in the thesis, determining the buckle load (and mode) in isolation is not sufficient
when carrying out a lateral buckling analysis. Rather, the post-buckling response must also be investi-

gated. It is, therefore, inappropriate to perform only a linear buckling analysis (even if the problem is

!'From within the UEL, it was not possible to discriminate between the first call of a new time step and a
call made to carry out an equilibrium iteration. To avoid writing data to file during unconverged equilibrium
iterations, a text file containing the increment number for which data was last written to file was maintained.
This text file was inspected at the start of each call to the UEL and only once the current value of KINC differed
from the text file value (indicating that the current call to the UEL was at the start of a new time step) was data
permitted to be written to file.
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sufficiently ‘stiff’ that the influence of material non-linearity prior to buckling is negligible). Instead, a
static, incremental analysis is required — that is, an analysis in which an increment of loading is applied,
and the displacements which satisfy equilibrium are sought. For such an analysis, a substantial reduction
in stiffness is expected to occur after reaching the buckle load (whether or not material non-linearity is
evident). Such dependence of stiffness on displacement (7.e. geometric non-linearity) means that it is nec-
essary to update the stiffness matrix following each increment in loading, and to account for the current
configuration of the pipe nodes when formulating the stiffness matrix. Abaqus offers an in-built facility
to carry out such stiffness matrix updates, and this facility was activated in all analyses by specifying

the NLGEOM option on each *STEP card (see, for example, lines [529]/{255}).

Section integration

In the analyses reported subsequently, it was of interest to account for the non-linear constitutive
response of the pipe wall material. Through the use of the Abaqus card, *BEAM SECTION (see
lines [413]|/{213}), numerical integration over a cross-section was used to formulate the global tangent
stiffness matrix accounting for the spread of plasticity appropriately. Eight integration points were
used to evaluate the relevant cross-section quantities and, by default, these were positioned at equal
circumferential intervals around the pipe perimeter. Also included in the input file were the options
SECTION=PIPE (to specify the section geometry) and MATERIAL=MAT (to associate the section
with the material definition listed under the card, *MATERIAL, NAME=MAT).

Stiffness matrix storage

The stiffness matrices returned from each instance of the macro-element were not, in general, sym-
metric. Accordingly, the UNSYMM=YES option was specified on each *STEP card (see, for example,
lines [529]/{255}) so as to retain the full stiffness matrix in the global equilibrium iterations (as opposed

to using just the symmetric part, which is the Abaqus default setting).

Instability

Post-buckling equilibrium paths typically exhibit snap-through and snap-back regimes. In a quasi-
static context, Abaqus offers two approaches to allow an analysis to be continued when such an unstable
loading regime is encountered. The first approach is to introduce artificial viscous damping forces so as to
return stability to those portions of the analysis which would otherwise have been unstable. The second
approach is to use the modified Riks, arc-length method; see Riks [135] and also Crisfield [136]. From
a mathematical perspective, the second approach is preferable since it yields solutions to the original
set of quasi-static equations. However, the inclusion of viscous damping forces is not entirely without
physical justification since they can be viewed as the quasi-static equivalent of inertia forces, which exert

a stabilizing effect in a dynamic analysis (this notion will be considered further in the discussion on the
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results of Test A). In any case, the inclusion of viscous damping forces is widely used in design practice
(see Chee & Walker [137]), possibly because the modified Riks method lacks robustness under certain
loading regimes. In particular, when encountering a snap-back regime, very high convergence tolerances
and small arc-length increments are often needed to distinguish between pre- and post-buckling portions
of the equilibrium path. Indeed, this was found to be the case when initial, trial analyses using the
modified Riks method were attempted for the work reported here. Accordingly, in the simulations
discussed subsequently, the first approach — that is, including viscous damping forces — was used. In
§7.4, discussion is provided on the extent to which the results of Test A were influenced by the inclusion
of viscous damping. However, it is acknowledged that, for future work, a more rigorous approach would

be to include the stabilizing inertia forces directly in a dynamic formulation of the problem.

7.3 Test problems

7.3.1 Test A: nominally straight pipe

Test A was concerned with investigating the response of a nominally straight pipeline to constrained
thermal expansion. As shown schematically in Fig. 7.1a, the chainage (straight-line distance between the
start and end points of the pipe) was 2km, and encastré supports were included at either end. The initial
position of the pipe nodes was along the Y axis but, in order to allow a buckled equilibrium path to be
followed, lateral displacement was applied before heating so as to introduce a small imperfection. The

chosen imperfection was given by the expression:

Umpax (cos <7”(Y7LLP/2)) +1> for LTP —L<Y< LTP - L
u =

(7.3.1)
0 otherwise

where umax is the peak lateral displacement amplitude (occurring at Y = Lr/2) and L is the half-
wavelength. As indicated on the figure, values for umax and L were taken as 0.5m and 50m respectively.
Imposing the imperfection incrementally in an Abaqus loading step meant that the bending stresses due
to the pipe’s curvature were accounted for appropriately, and that the starting seabed surface geometry
was consistent with a pipe section that had undergone lateral displacement prior to heating. The length
of each pipeline element was 2.5m and an instance of the macro-element was included at every second
node (such that the per-unit-length load components returned from each instance of the macro-element
were scaled by 5m so as to give total nodal load values; see property 2 in Table 7.2). Tt is noteworthy
that the pipeline length and boundary conditions used in this test are appropriate to a VAS analysis, as
discussed in §2.3.

Following the lateral displacement step undertaken to impose the imperfection, the pipe-soil elements
around the central chainage were expected to be at yield. In the field, it was deemed likely that, prior to

heating, some small lateral displacement (or a creep-like mechanism) would give rise to elastic unloading,
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F1G. 7.1: Schematic showing the geometry and boundary conditions of Test A.

and thus reduce the horizontal load, H, below its yield value for the applied V. To mimic this response
in the simulation, the initial amplitude of the imperfection, umax, was reduced by 1%, so as to give a
peak out-of-straightness of 0.495m. One consequence of imposing the imperfection in this way was that,
prior to heating, non-zero horizontal loads were expected to be distributed over the laterally displaced
portion of the pipeline.

The symmetry of the initial imperfection about Y = Lr/2 (Ch.1000m), together with the symmetry
of the boundary conditions and the spatial uniformity of the soil and pipe properties, meant that — by
inserting a boundary condition at Y = Lr/2 (Ch.1000m) to impose symmetry about the plane parallel
to the X axis — it was only necessary to model half of the problem, as shown in Fig. 7.1b. This reduced

the computational expense (and memory demand) of the analysis by (approximately) a factor of two.

7.3.2 Test B: snake-lay pipe

Test B was concerned with investigating the response of an initially snaked pipeline to constrained
thermal expansion. In accordance with typical snake-lay profiles used in the field, the chosen lay curve
was constructed from a series of circular arcs joined together by straight lines, as shown schematically in
Fig.7.2a. The radius of curvature of each bend was 500m — which is, perhaps, a rather low value relative
to the field norm but, nevertheless, was a convenient choice since the snake’s wavelength was just 2km.

The symmetry of the lay curve (together with the fact that the prescribed soil and pipe properties
were spatially uniform) meant that, via the insertion of the appropriate boundary conditions, it sufficed
to analyse just the portion of the pipeline spanning one quarter of one wavelength. In Fig. 7.2b, one such
quarter-wavelength portion has been extracted (between Ch.500m and Ch. 1000m), with the appropriate
boundary conditions shown; namely, boundary conditions to prevent displacements in the X:Y plane at
Ch.500m and to impose symmetry about the plane parallel to the Y axis at Ch.1000m. As for Test
A, the length of each beam element was 2.5m, and an instance of the macro-element was included at

every second node. One shortcoming of the Test B analysis was that the bending stresses due to the



Chapter 7: Structural analyses incorporating the force-resultant model 260

()

% o 7
%, - %,
2 X , — 150m
150m _--""
> y -
Y %@@
g & & E
g ] = B S
& 2 = E =
O‘ O o O O
(b)
Roller
X Pi support
mn
support
El &
vy ooz =
O S

F1Gg. 7.2: Schematic showing the geometry and boundary conditions of Test B.

pipe’s initial curvature were neglected. It is acknowledged that a more rigorous analysis would involve

incrementally loading the pipe to generate the snaked geometry before it is embedded into the seabed.

7.3.3 Pipe, soil and user-defined properties

The values of the pipe, soil and user-defined properties chosen for Tests A and B are listed in Table
7.4. D = 1m represents a large flow line, while selecting ¢ as 0.040m ensured that the pipe was of an
appropriate flexibility (D : ¢ ratio of 12.5). A de-coupled, isotropic, elastic perfectly plastic constitutive
model was assumed for the wall material, with Young’s modulus, F, and Poisson’s ratio, v, used to
specify the elastic behaviour, and a Von Mises yield criterion assumed to govern the yielding response
(the Abaqus default). E, v, o, (the uniaxial yield stress), and « (the coefficient of thermal expansion)
were assumed as constants, with their values chosen to be representative of a high-grade steel. Regarding
the soil properties, the chosen value for ¢’ typically corresponds to a sand close to critical state, while ¢
was taken as 0.535¢/, as applicable to a smooth steel/sand interface.

A buckling response was anticipated for Test A, and hence artificial viscous loading forces were

included in the analysis. Abaqus computes the vector of viscous forces, v, as:
VF = DSMUN (732)

where Dy is the damping stability factor, M is the artificial mass matrix (formulated by assuming that
the pipe has unit density) and uy is the vector of nodal velocities (calculated as the change in the nodal
displacements, divided by the time-step). It was desirable to include as little viscous loading as possible
and, hence, several trial analyses were carried out for Test A so as to determine the minimum value of D,
needed to allow the analysis to reach completion. This minimum value was found to be approximately
1.5x107° and, accordingly, was used to generate the Test A results presented subsequently (although
comparisons with a trial analysis assuming a higher value for Dy are also discussed briefly). Concerning

the other user-defined parameters, the initial embedment depth (which was used in the manner discussed
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Property Symbol | Value Units
A. Pipe Outer diameter D 1.00 m
Wall thickness t 0.040 m
Young’s modulus E 210,000 | MN/m?
Shear modulus G 131,250 | MN/m?
Uniaxial yield stress oy 448.97 MN /m?
Submerged per-unit-length weight Yp 0.002 MN/m
Coefficient of thermal expansion a 1.2x1076 | °C—!
B. Soil Effective friction angle @' 35.00 °
Interface friction angle ) 19.00 °
Buoyant self-weight ~' 0.0051 MN /m3
Vertical elastic constant kvw 0.105 —
Horizontal elastic constant. ki 0.105 -
Cross-coupling elastic constant kv 0.000 -
Shear modulus G 10.00 MN/m?
C. User-defined | Damping stability factor (Test A only) | Ds 1.5x107° | -
Number of soil columns N 10,400 -
Initial embedment depth 0.0625 m

TABLE 7.4: Parameter values used in the test problems.

below) was chosen as 0.0625m, while the number of soil columns, N, was chosen so as to accommodate

lateral displacement of up to 20D and to make use of 260 seabed columns per pipe diameter.

7.3.4 Vertical penetration

The procedures used to lay pipelines in the field were described in §1.1.4. For the simulations, however,
the following more idealized lay procedure was assumed. Firstly, the entire pipeline was simultaneously
penetrated under displacement control to reach the user-defined initial embedment depth (0.0625m).
Then, the pipeline was subjected to a uniformly distributed vertical load equal in magnitude to the
prescribed value of «,, — the submerged per-unit-length pipe weight (2kN/m).

The lay procedure described above is a simplification of the actual vertical loading history accom-
panying pipe-lay in the field. Nevertheless, it was sufficient to generate a representative value for the
overloading ratio, which — as discussed in Chapter 2 — dictates the initial tendency for the pipe to pene-
trate or rise upward when lateral displacement begins. Indeed, for the penetration depth chosen for the
simulations (0.0625m), the corresponding value of V3 = V5 was 14.03kN/m, such that the overloading
ratio, R, (for fy;) =2kN/m) was 7.016. This value is within the typical range encountered in the field
and, accordingly, it was deemed likely that the key facets of the vertical loading history incurred prior

to heating were captured in the simulation.

7.3.5 Abaqus loading steps
Following from the above discussion, it is in the interests of clarity to summarize the Abaqus loading

steps given in the input file on pages 253-254. For Test A, the steps were as follows.
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1. Vertical loading; see lines [438-454]. Firstly, using the Abaqus card, *DLOAD, a uniformly distributed
vertical load was applied so as to account for the pipe’s self-weight. As noted above, the prescribed
per-unit-length weight was less than the maximum value for the chosen penetration depth and, hence,
only elastic vertical displacements were expected in this step.

2. Lateral, displacement-controlled loading; see lines [455-491]. Next, incremental lateral displacements

were prescribed, using the OP=MOD option on the *BOUNDARY card, so as to impose the initial

distribution of lateral displacement with axial position given by Eq.7.3.1.

3. Lateral, displacement-controlled unloading; see lines [492-528]. The amplitude of the imperfection
was then reduced by 1%, again using the OP=MOD option on the *\BOUNDARY card.

4. Heating; see lines [529-547]. The temperature of the pipeline was then uniformly increased by 175°C

using the Abaqus card, *TEMPERATURE.
5. Cooling. The temperature of the pipeline was then uniformly reduced by 175°C, again using the
Abaqus card, *TEMPERATURE.

In Test A, steps 4 and 5 were then repeated, so as to obtain a prediction of the pipeline’s response
to a second cycle of heating and cooling. For each converged equilibrium iteration in each step of the
analysis, output was requested for: (i) the nodal displacements, (ii) the nodal viscous forces, (iii) the
reaction loads at the encastré support, (iv) the beam element stresses, and (v) the beam element strains
(total and plastic). The element outputs were taken at all eight section integration points. Output was
also written to file from the instances of the user-elements located at Ch. 850m, Ch.900m and Ch. 1000m.

The first, second and third loading steps of Test B were the same as the first, fourth and fifth loading
steps of Test A (the second and third steps of Test A were omitted from Test B because no imperfection
was imposed within the analysis). Ten heating and cooling cycles were simulated in Test B, followed by
a further increase in temperature by 210°, so as to predict the response which would arise if the pipe

were to be subjected to more onerous operating conditions part-way through its lifespan.

7.3.6 Limitations
While Test A and Test B were thought to be appropriate models of thermally loaded on-bottom

pipelines, the following limitations are worthy of comment.

e Pressure loading. As discussed in §1.1.2, increases in both temperature and pressure drive the build-
up of compressive loading in a nominally straight pipeline. However, as noted above, cyclic heating and
cooling was simulated in Tests A and B without accounting for any internal pressure changes. While
this allows for a slightly more simplistic interpretation of the data (since the temperature change,
AT, can then be considered as the sole dependent variable), it is acknowledged that internal pressure

generates hoop stresses, which will influence the yielding response of the wall material.?

2For example, thin-walled theory gives 35.92MPa as the critical pressure differential (the difference between
the internal and external pressure) needed to give a hoop stress equal to the uniaxial yield stress (448.97MPa).
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e Thermal gradients. In the simulations, the pipeline was subjected to a spatially-uniform increase
in temperature. However, in practice, the temperature reduces with distance away from the well-head
as the product cools. Such thermal gradients generate non-uniform axial strains, which are likely to
exert an influence on the lateral buckling/bending response.

e Pipe properties. In Tests A and B, F, v, 0y and o were taken as constants. However, it is
acknowledged that: (i) E decreases with increasing T (e.g. BS 5500 quotes a modest, 5.2% reduction
in £ when T is increased from 0°C to 200°C); (ii) « typically increases with T; and (iii) oy, tends to
increase with plastic strain (i.e. the wall material strain-hardens).

e External pipe coating. In the field, a concrete coating is often added for thermal insulation and
corrosion protection. The inclusion of such a concrete coating would clearly influence the section
properties, and also the propensity for plastic strains to develop.

e Axial resistance model. No axial resistance model was included in the current analyses. As
discussed in Chapter 1, it was assumed at the outset of the work that the load:displacement response
in the lateral and vertical DOFs primarily governed the lateral buckling/bending behaviour of an on-
bottom pipeline. Despite this, since axial load:displacement models are typically incorporated in the
numerical analyses carried out in industry (cf. the discussion in §2.3), some aspects of the results
presented subsequently were expected to differ from those commonly presented in industrial design

analyses (in particular, the variations of axial displacement with chainage).

7.4 Test A results

In this section, the results of Test A are presented and discussed. The heating and cooling portions
of each cycle are addressed in turn, together with a discussion on the influence of viscous loading. Brief
commentaries on the outputs from the macro-element instances located at Ch.1000m, Ch.900m and

Ch. 850m are also provided.

7.4.1 1st cycle; heating (onset of buckling)

Fig. 7.3 shows the predicted evolution of the (compressive positive) axial load, Py, with the tem-
perature change, AT; the red curves correspond to the heating portions of each cycle, while the blue
curves correspond to the cooling portions. Fig.7.3a shows that, up to AT = 19.1°C, the initial accumu-
lation of Py with AT was linear, with 0.303MN of axial load gained for every 1°C rise in temperature.
The prescribed value of aEA was 0.304MN/°C, which suggests that the increase in temperature was
accommodated by axial expansion towards the imperfection. This assertion is supported by the plots
in Figs 7.4a, 7.4c and 7.4e, which show that, at Ch.1000m, Ch.900m and Ch.850m, negligible lateral
displacement occurred during the initial heating to AT = 19.1°C. From AT = 19.1°C to AT = 20.8°C,
Fig.7.3a shows that the axial load reduced sharply, falling from 5.49MN to 3.53MN. During this portion
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of the test, the plots in Fig. 7.4 show that the lateral displacements at Ch. 1000m, Ch.900m and Ch. 850m
respectively increased in magnitude by 1.80m, 1.03m and 0.58m. These observations are characteristic
of a buckling response in which the pipeline snaps into a laterally displaced configuration on reaching
a critical AT. Accordingly, it is apparent that, in this test, 19.1°C was the critical temperature rise to
induce lateral buckling, and that 5.49MN was the corresponding critical axial load. The plots in Fig. 7.5
also show marked changes in the axial displacements on reaching AT = 19.1°C, as is consistent with the
notion of the pipe feeding-in towards its centre-point so as to accommodate the growth of the buckle.
Fig. 7.6 shows the variation of the lateral displacement with chainage at various AT values. Data
corresponding to the heating portions of each cycle are plotted for chainages less than 1000m, while
data corresponding to the cooling portions of each cycle are plotted for chainages greater than 1000m.
The plot corresponding to AT = 20.8°C in Fig. 7.6a reveals that the predicted buckle mode is similar
to the 3rd mode considered by Kerr/Hobbs, as shown in Fig.2.2. Indeed, if u4 and uy are both taken
as 0.323, the critical buckling length is the same as that predicted by Test A. Fig.7.7 is a plot showing
the comparison between Test A’s buckle mode and the Kerr/Hobbs solution for ps = pr = 0.323.
This plot shows that, while the amplitudes of the central lobe are similar, Test A’s prediction of the
magnitude of the surrounding lobes exceeds that of the Kerr/Hobbs solution. The Kerr/Hobbs solution
(for pa = pr, = 0.323) also predicts a buckle load which is 25.5% lower than the 5.49MN predicted by

Test A.
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Fig. 7.8 shows the variation, with AT’ of the model and viscous contributions to the per-unit-length
horizontal load, H, during the heating portion of the first cycle. At Ch.1000m, Fig.7.8a shows that,
prior to heating, the model’s prediction of H was not zero. Rather, the cumulative effect of imposing the
imperfection (and subsequently reducing its magnitude) gave an initial H of -0.79kN/m. On heating, the
response prior to buckling can be divided into two regimes. In the first (from AT = 0°C to AT = 6.3°C),
H increased substantially to 0.99kN/m, while in the second (from AT = 6.33°C to AT = 19.1°C), H
increased more moderately, reaching a value of 1.14kN/m at AT = 19.1°C. From Fig. 7.17(a,ii), page 276
— which shows the variation of H with « at Ch.1000m — it is apparent that only elastic displacements
occurred in the first regime, while both elastic and plastic displacements occurred in the second. The
identification of plasticity prior to buckling implies that the seabed’s strength, and not just its elastic
stiffness, influences the prediction of the critical AT at which instability arises. One implication of

this observation is that a linear buckling analysis — which, by definition, cannot account for plasticity —
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Fic. 7.8: Variation of the model and viscous H load components with AT

would have been inappropriate, had it been undertaken. On reaching AT = 19.1°C, Fig. 7.8a shows that
H increased markedly at Ch.1000m, as is consistent with the marked increase in lateral displacement
accompanying buckling. At Ch.900m, Fig.7.8b shows that, while positive values for the per-unit-length
horizontal load were predicted prior to buckling, negative values were predicted thereafter, so as to

restrain the growth of the secondary buckle lobes (labelled ‘IT” in Fig.7.6a).

7.4.2 Viscous loading

The plots of the viscous contributions to the per-unit-length horizontal loads in Figs 7.8a and 7.8b
are characterized by spikes centred on AT = 19.7°C. Before and after buckling, the viscous loads were of
negligible magnitude (relative to the macro-element model contribution at the same chainage), while at
AT = 19.7°C, the viscous loads attained maxima (equal to 67% of the model contribution at Ch. 1000m
and 59% of the model contribution at Ch.900m). Figs 7.9a and 7.9b show the deflected shape of the
pipeline at the point in the test for which the viscous loading was highest (i.e. AT = 19.7°C). Also
included on the plot in Fig.7.9a are a series of vectors, of length proportional to the magnitude of the
model contribution to the per-unit-length horizontal load at the chainage against which they are plotted
(with salient values labelled), and of orientation indicative of the direction of loading onto the pipe.
Fig.7.9b shows a similar set of vectors, except that their magnitudes are proportional to the viscous
contribution to the per-unit-length horizontal load. A comparison between the two plots reveals that, at
all axial positions, the model contribution to H exceeds the viscous contribution (although the two are

comparable around the central chainage).
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Due to the non-linearity inherent to the analysis, the extent to which the viscous loading influenced
the buckling (and post-buckling) response is, to a certain extent, a matter of conjecture. However,
contrasting the results of Test A with those of a second analysis for which a higher value of Dy was
assigned (but in all other respects was identical to Test A), allows for some insight into the influence of
viscous loading. Figs 7.8c and 7.8d are plots of the viscous and model contributions to the per-unit-length
horizontal load for an analysis undertaken using a Dy value ten times greater than that used for Test A
(i.e. 1.5x10™%). These plots show that, as intended, the use of a higher D, value led to the inclusion
of more viscous loading — indeed, Fig.7.9b shows that the viscous contribution to the horizontal load
at Ch.900m was sufficiently high so as to momentarily exceed the model contribution. For both the
Dy =1.5x107° (Test A) analysis and D, =1.5x10"% one, Fig.7.10a shows the variation, with AT, of
the lateral displacement at Ch.1000m. This figure shows that the generation of more viscous loading
gave rise to less lateral displacement per unit temperature rise (the plot for Dy =1.5x1075 has a peak
gradient of 2.28m/°C, while the plot for Dy =1.5x10~* has a peak gradient of just 0.56m/°C). Similarly,
Fig.7.10b shows that the inclusion of more viscous loading served to smooth the sharp drop in axial load

at the onset of buckling (and also gave rise to a higher peak axial load).

As noted earlier, the D, =1.5x107° analysis (for which the viscous and model contributions to the
per-unit-length horizontal load were of the same order of magnitude) gave results indicative of an unstable
snapping mechanism. Accordingly, given the findings stated above, it would appear likely that if the
viscous loading were to be omitted entirely, some reduction in 7" (i.e. cooling) would be needed to satisfy
equilibrium during buckling (see the red curves on the plots in Figs 7.10a and 7.10b). It would appear
likely, therefore, that the viscous loading served to alter the buckling portion of the equilibrium path (in a

given load:displacement space) from one exhibiting snap-back to one that is marginally stable (and, hence,
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could be followed using the modified Newton-Raphson method). Regarding the physical admissibility
of such a snap-back equilibrium path, it is important to bear in mind that, since a monotonic increase
in temperature is applied in the field, such a snap-back response would not be observed in practice.
This implies that the viscous loading is likely to have some physical justification, for example, as pseudo
inertia loading, or possibly some actual viscosity. Therefore, the inclusion of viscous loads should not
necessarily be viewed negatively, although, as mentioned in §7.2.3, it is acknowledged that the rigour of
the analysis could be improved by accounting for the stabilizing inertia forces appropriately in a dynamic

formulation of the problem.

7.4.3 1st cycle; heating (post-buckling)

Buckle growth

Fig. 7.6a shows that, with increasing AT, the amplitude of the central buckle lobe increased mono-
tonically, reaching a peak value of 13.86m (see label ‘I’). The figure also shows that as the amplitude
of the secondary buckle lobe increased, its peak moved away from the central chainage (see label ‘IT).
Between AT = 20.8°C and AT = 55°C, a third buckle lobe emerged (see label ‘IIT’) and, in doing so,
more initially straight pipeline began to displace laterally. While there was negligible lateral displacement
at Ch.725m at the onset of buckling, following heating to AT = 175°C, finite lateral displacements at
chainages as low as 600m are evident (see label ‘V’).

A comparison between Figs 7.4a and 7.4e reveals that the change in lateral displacement per unit
temperature rise was greater at Ch. 1000m than at Ch.850m. This finding is also evident from the plot
in Fig.7.6a, which shows that the growth of the central buckle lobe exceeded that of the secondary
buckle lobe (compare labels ‘T" and ‘IT’). It is of interest to note that, in order to accommodate the
enlargement of the central buckle lobe, the portion of the pipeline around Ch.900m is seen to change
the direction in which it is displacing part-way through heating (see label ‘IV’). Fig.7.4c shows that,

at Ch.900m, negative lateral displacement occurred for AT < 80°C while positive lateral displacement
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occurred thereafter. The possibility of a reversal in the direction of lateral displacement accompanying
monotonic heating is not, perhaps, widely appreciated.

Fig.7.11 is a plot showing the distribution of the per-unit-length horizontal load, as predicted by the
model, part-way through heating (at AT = 55°C). Compared with the horizontal load distribution at the
onset of buckling (Fig. 7.9a), this plot shows that the seabed’s strength is mobilized over a greater length
of pipeline in order to restrain further lateral displacement. (A plot of the viscous load distribution
at AT = 55°C is not provided, as its peak magnitude is sufficiently low that the load vectors are
indistinguishable from the line showing the pipe’s deflected position). Fig.7.12 shows the variation of
the vertical displacement of the pipe with chainage, together with the difference between the per-unit-
length vertical load and the prescribed per-unit-length buoyant pipe weight, presented in the same format
as Fig. 7.11. This plot reveals that quite substantial lengthwise variations in the distributed vertical load
are to be expected, a finding which is only apparent as a result of the inclusion of this 2-DOF model in
the structural analysis.

Fig.7.13 shows that the variation of axial displacement with chainage at various stages of the test.
Fig. 7.13a shows that, once fully heated (at AT = 175°C), the distribution of axial displacement is similar
to the idealized response that was anticipated for an unconstrained laterally buckled pipe, as discussed

in §2.3.1 (see Fig.2.9). Specifically, for most chainages, axial displacement is predicted to occur towards
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the pipe’s centre-point, so as to accommodate feed-in to the buckle lobes. However, it is noteworthy
that between Ch.977.5m and Ch. 1000m, expansion around the crown of the buckle led to some net axial
displacement away from the pipe’s centre-point, albeit of a small magnitude (less than 0.02m). The fact
that the peak axial displacement was just 1.45m (at Ch. 745m) suggests that it was appropriate to make
use of a force-resultant model devised under the assumptions of plane strain (such that the per-unit
length loads acting in the plane perpendicular to the beam axis at a given axial position can be taken

as functions only of the history of displacement within that plane, at that axial position).

Wall stress/strain distributions

In general, when assessing the distributions of stress and strain along the pipe wall, it is important to
bear in mind the contributions arising from bending and axial loading. Fig. 7.3a shows that a compressive
axial load was induced during heating (although its magnitude is seen to reduce slightly with increasing
AT). Accordingly, for this test problem, the stress is most critical at the point of highest curvature on
the inside of a bend, where the bending stresses — like those due to axial loading — are compressive. From
the post-buckling distribution of lateral displacement with chainage shown in Fig.7.4a, it is apparent
that the point of highest curvature is at the central chainage (Ch.1000m). Hence, in Fig.7.14, a plot of
the variation in the (compressive positive) longitudinal stress, oz, along the side of the pipe which lies
on the inside of the bend at Ch.1000m is shown.

The plot for AT = 175°C in Fig.7.14a is characterized by a series of peaks and troughs, each corre-
sponding to a point of local maximum curvature. The longitudinal stress was found to be approximately
equal to the Mises stress invariant (a finding which was anticipated prior to carrying out the analysis,
given that the shear loads carried by the pipe were expected to be very low, and no hoop stresses were
imposed). Accordingly, the proximity of oy, to the uniaxial yield stress, o, at a given chainage, provides
a measure of the extent to which the pipe’s yield strength was utilized at that chainage. The prescribed
value for o, (448.97MPa) is shown on the plot in Fig. 7.14a by a dashed line, and over the 17.5m distance
either side of Ch.1000m, it is evident that the pipe underwent yielding. Although yielding is, of itself,
typically insufficient to conclude that the pipe would not meet the relevant limit state conditions, it is
troublesome since the inclusion of the hoop stresses (due to an increase in the internal pressure) would
lead to a more onerous stress state (suggesting that if pressure loading were to be taken into account,
the zone of plasticity would extend over a greater portion of the pipe, and the plastic strains would be
of greater magnitude). Elsewhere, the peak tensile stress of 310.1MPa (76.1% of o) is seen to occur at
the apex of the secondary buckle lobe (at Ch.862.5m).

Figs 7.15 and 7.16 respectively show the variations in the plastic and total (compression posi-
tive) longitudinal strains along the side of the pipe which forms the inside bend around the central
chainage. Fig.7.15a shows that the pipe is predicted to undergo axial expansion at all points except

those around Ch.1000m, where the compression due to bending exceeds the expansion due to the im-
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posed, temperature-driven axial straining. In accordance with the stress distribution shown in Fig. 7.14a,
Fig.7.16a shows that plastic straining was confined to the central 35m portion of the pipe. The peak
plastic strain is 0.041% (at Ch. 1000m), while the peak total strain magnitude is 0.358% (at Ch.862.5m).

7.4.4 1st cycle; cooling

For chainages above 1000m, Fig.7.6a shows the distribution of lateral displacement at various AT
values during cooling. As expected, this plot shows that cooling brought about a reduction in the lateral
displacement at most chainages; see labels ‘VI’ and ‘VII'. It is interesting to note that as the amplitude
of the secondary buckle lobe reduced, its peak moved further away from Ch. 1000m (see label ‘VII’) so as
to give a deflected shape of lower amplitude but higher wavelength. In accordance with this observation,
label ‘VIIT” identifies that more initially straight pipe underwent positive lateral displacement during
cooling (e.g. the lateral displacement at Ch.1400m increased by 0.50m).

A comparison between the curves corresponding to the same AT values on either side of Ch.1000m
reveals that the pipeline did not return to its original position prior to heating. Rather, as shown in Figs
7.4a, 7.4c and 7.4e, the lateral displacements at Ch.1000m, Ch.900m and Ch.850m were, respectively,
3.03m, 0.75m and 0.93m higher in magnitude than their values before heating. Accordingly, it is apparent
that the inclusion of plasticity in the pipe-soil force-resultant model (and also in the constitutive model
assigned to the pipe wall material) gave rise to a plastic response in the variation of lateral displacement
with AT (in the sense that not all of the lateral displacement accumulated on heating was recovered on
cooling). The plots in Figs 7.5a and 7.5¢ also show the accumulation of some net axial displacement
following heating and cooling. However, a comparison between the plots corresponding to the same
chainages in Figs 7.4 and 7.5 reveals that the net accumulation of lateral displacement was proportionally

greater than the net accumulation of axial displacement.
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Fig.7.16a shows that the plots of the plastic strain distributions at the end of heating and end of
cooling overlie one another. This implies that the pipe unloaded elastically during cooling. Fig.7.14a
shows the residual stresses remaining once the pipe had fully cooled. Again, a comparison between this
plot with the one in Fig.7.6a reveals the expected correspondence between the points of peak stress
amplitude and peak curvature. It is also noteworthy that there is a dip in the stress level around the
central chainage, owing to the plastic straining which had occurred in this region during heating. Indeed,
at Ch.1000m, there is a tensile residual stress of 55.0MPa — a drop of 503.97MPa (the largest stress
change) from the peak value at the end of heating. As shown in Fig.7.3, the cumulative effect of the

residual axial stresses was to induce a tensile axial load of 2.39MN.

7.4.5 2nd cycle; heating

Fig.7.3b shows that, once heating had recommenced, the accumulation of axial load with AT was
linear up until AT = 14°C. During this portion of the test, Figs 7.4b, 7.4d and 7.4f and Figs 7.5b and
7.5d show negligible changes in the lateral and axial displacements. Accordingly, as at the start of the
first cycle, the initial heating appears to be accommodated purely by axial expansion. On reaching
AT = 14°C, the plots in Figs 7.4 and 7.5 show that lateral and axial displacements then began to
propagate. However, unlike the first heating cycle, the plots are not suggestive of an unstable snapping
mechanism, but rather show a stable accumulation of displacement (as expected given the substantial
starting imperfection arising from the first heating and cooling cycle). Once lateral displacement began
to increase, Fig.7.3b shows that a compressive load of approximately 2.1MN was induced in the pipe
(close to the value predicted at the end of the heating portion of the first cycle).

A comparison between Figs 7.4a and 7.4b reveals that, at Ch. 1000m, the peak lateral displacement at
the end of the second cycle (15.56m) exceeded the peak lateral displacement at the end of the first cycle
(13.86m). On the other hand, Figs 7.6b and 7.6d show that the magnitudes of the lateral displacements
at both Ch.900m and Ch.850m were lower at the end of the second cycle than at the end of the first.
These observations are verified by the plot in Fig. 7.6b, which shows that the greater growth in the central
buckle lobe was offset by the lesser growth in the the surrounding buckle lobes. Indeed, at Ch.700m, the
peak lateral displacement was less than 1m. The concentration of lateral displacement around Ch. 1000m
is a concern for design since the pipeline is then more likely to exceed a limit state. Indeed, the plot in
Fig.7.14b shows that, at the end of the heating portion of the second cycle, the yielded zone extended
over the central 40m portion of the pipeline, 5m more than at the end heating in the first cycle. Fig. 7.16b
also shows that peak plastic strain in the second cycle (0.056%) was 27% greater than the peak plastic

strain in the first cycle.
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7.4.6 2nd cycle; cooling

For chainages greater than 1000m, Fig.7.6b shows the lateral displacement distribution at various
points during the cooling portion of the second cycle. A comparison between the curves corresponding to
the same AT values on either side of Ch. 1000m reveals that, as in the first cycle, not all of the lateral
displacement accumulated during heating in the second cycle was recovered on cooling. The plots in Figs
7.4b, 7.4d and 7.4f show that at Ch.1000m, Ch.900m and Ch.850m, net lateral displacement changes
of 0.54m, 0.09m and 0.11m were predicted. Also, the residual stresses shown in Fig. 7.14b are of slightly
greater magnitude than those at the end of the first cycle and, accordingly, a comparison between Figs
7.3a and 7.3b reveals that the tensile load at the end of cooling in the second cycle (2.99MN) is 25%

higher than at the end of the first cycle.

7.4.7 Macro-element output

Figs 7.17, 7.18 and 7.19 contain plots showing, respectively, the outputs from the instances of the
macro-elements at Ch.1000m, Ch.900m and Ch.850m (the red lines on these plots correspond to the
heating portions of each cycle, while the blue lines correspond to the cooling portions). In the following,
some brief commentary is provided on the key trends discernible from these plots. As a precursor to
this discussion, it is important to bear in mind that lateral displacements of up to 13.86m are certainly
of sufficient magnitude to confirm that the model can operate appropriately in an analysis for which
sections of pipe undergo very large lateral displacements (>10 pipe diameters). Also, by accounting for
both heating and cooling, the test demonstrates that the model can handle reversals in the direction of

lateral pipe movement.

Ch. 1000m

The plot in u:w space in Fig.7.17(a,iv) shows that, on applying the first increase in temperature,
the pipe initially underwent penetration, before rising upward and, then, displacing laterally at constant
elevation. The per-unit-length horizontal load, H, is seen in Fig.7.17(a,ii) to increase over the range of
AT values for which this section experienced penetration, but thereafter dropped slightly. Fig.7.17(b,i)
shows the seabed surface formed due to the lateral displacement undertaken to impose the initial imper-
fection, while Figs 7.17(b,ii) and 7.17(b,iii) show the berm formed as a result of the lateral displacement
experienced during heating. On cooling, Fig. 7.17(a,iv) shows that the pipe initially underwent penetra-
tion, before displacing laterally with little further change in elevation. The plot in Fig. 7.17(b,iv) shows
the berm formed on the pipe’s return path. Once fully cooled, the pipe was positioned 3.03m away from
its initial position prior to heating (as discussed in §7.4.4). Throughout the first heating and cooling
cycle, Fig. 7.17(a,i) shows that V' did not remain equal to the prescribed value of the per-unit-length sub-
merged pipe weight (2kN/m). Instead, V' was consistently above 2kN/m, fluctuating between minimum

and maximum values of 2.21kN/m and 2.71kN/m respectively (implying that the sections of pipe around
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Fic. 7.17: Load:displacement record and predicted seabed surfaces at Ch. 1000m.

Ch. 1000m penetrated by a sufficient amount so as to mobilize enough vertical load-carrying capacity to
support a portion of the weight of their neighbouring sections).

On applying the second increase in temperature, the plot in Fig.7.17(a,iv) shows that, following
some initial penetration, the pipe experienced substantial uplift. As in the first cycle, H increased while
the pipe was penetrating, but remained approximately constant while the pipe was rising. Fig.7.17(d,i)

shows the berm formed at the rightmost lateral displacement extremity, and a comparison between this
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F1G. 7.18: Load:displacement record and predicted seabed surfaces at Ch.900m (Ch.1100m).

figure and the one in Fig.7.17(b,iii) reveals that the second cycle of lateral displacement brought about

an increase in the berm’s size. On cooling, the pipe followed a similar trajectory to that during heating,

but offset vertically downward. Once fully cooled, the pipe did not reach the same lateral position as at

the end of the first cycle (as noted in §7.4.4), although the soil that displaced leftward during cooling is

seen to have amalgamated with the berm deposited at the leftmost lateral displacement extremity.
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h. 900

As discussed in §7.4.3, the initial increase in temperature brought about negative lateral displacement
at Ch.900m. Accordingly, as shown in Fig. 7.18(a,ii), negative per-unit-length horizontal loads were also
predicted to act at Ch.900m at the start of the test. However, part-way through heating, the pipe
underwent a reversal in the direction of lateral displacement at Ch.900m, as also discussed in §7.4.3. As

such, Fig. 7.18(a,ii) shows the corresponding reversal in the direction of horizontal loading. Figs 7.18(b,ii)
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and 7.18(b,iii) show, respectively, the seabed surface at AT = 70°C (shortly after the reversal in the
direction of lateral displacement) and at AT = 175°C (once the pipe was fully heated). These plots show
the berm deposited at the leftmost lateral displacement extremity, and the smaller second berm formed
on the pipe’s return path. On cooling, the pipe continued its rightward movement, without undergoing
any further, substantial change in vertical elevation. However, towards the end of cooling, the pipe is
seen to have changed its direction of lateral displacement, and also to have undergone penetration. At
this point in the test, the plot in V:H space shows a substantial gain in the per-unit-length vertical load
to a peak level of 4.66kN/m. At the end of cooling, Fig.7.18(a,iv) shows that the pipe had displaced
beyond its position prior to heating. In keeping with this observation, Fig.7.18(b,ii) shows that the pipe
pushed through the berm formed at the rightmost lateral displacement extremity, enlarging its size in
doing so.

From Fig. 7.18(c,ii), it is apparent that the the magnitude of lateral displacement experienced in the
second heating and cooling cycle was considerably smaller than that experienced in the first cycle. The
second increase in temperature was initially accompanied by leftward movement but, as in the first cycle,
a reversal in the direction of lateral displacement occurred towards the end of heating. Accordingly,
the distribution of berms shown in Fig. 7.18(d,i) is predicted to arise at AT = 175°C. During cooling,
the response is similar to the first cycle; the rightward movement which began at the end of heating is
seen to continue but, at the very end of cooling, the pipe is predicted to reverse its direction of lateral
displacement. The per-unit-length vertical load is also predicted to rise substantially during this portion

of the test, reaching a peak value of 5.65kN/m.

Ch. 850m

At Ch.850m, the heating portion of the plot in u:w space in Fig.7.19(a,iv) consists of a concave
upward curve, showing that the pipe moved down as the temperature rose to a AT value of approxi-
mately 55°C, and rose thereafter. Fig.7.19(a,ii) shows that H increased as the pipe descended, before
leveling off at a constant value of approximately 2kN/m. Leftward movement is seen to occur throughout
heating, and Fig. 7.19(b,ii) shows the formation of a substantial berm at the leftmost lateral displace-
ment extremity. Fig.7.19(a,iv) shows that rightward displacement occurred throughout cooling, with
a substantial gain in penetration accompanying the initial reduction in temperature. Thereafter, the
trajectory followed during cooling by the pipe at Ch.850m was similar to that accompanying heating.
Throughout the first heating and cooling cycle, the value of V' is, again, seen to fluctuate, both rising
above and falling below the prescribed per-unit-length pipe weight (2kN/m).

The second increase in temperature is, again, seen to induce purely leftward displacement, although
the magnitude of the lateral displacement experienced in the second cycle was less than than that

experienced in the first cycle. Despite this, the soil displaced leftward is seen to amalgamate into a single

berm at the leftmost lateral displacement extremity, as shown in Fig.7.19(d,i). Throughout the second
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heating and cooling cycle, V' deviated substantially from the submerged pipe weight of 2kN/m, reaching

maximum and minimum values of 4.00kN/m and 0.52kN/m respectively.

7.4.8 Comparison with current practice

As discussed in Chapter 2, the use of 1-DOF (u:H) force-resultant models is ubiquitous in industry.
Accordingly, at this juncture, it is important to provide some brief, qualitative discussion on how the
predictions of such 1-DOF models differ from those of the 2-DOF macro-elements used in the simulation
here. As shown in Figs 7.17-7.19, and as discussed above, significant deviations in V from the prescribed
buoyant per-unit length weight value are evident in the results of Test A. Given the calibration of the
model’s flow rule, such findings are not surprising since the (V, H) load point is required to move towards
an apex of the yield surface for the pipe to begin descending/ascending. The tendency for the (V, H)
load resistance to change with the direction of pipe movement can only be captured by a model cast in
2-DOFs, and thus this represents is a key feature of the model which distinguishes it from those cast in
1-DOF. A notable example of the importance of this facet of the model is evident from the plots in Figs
7.18(c,i)-(c,iv), a close examination of which reveals that the marked increase in V' on cooling coincides
with the penetration of the pipe which occurred marginally before the pipe temperature dropped to
115°C. This gain in V is also seen to coincide with a gain in H, inevitably as a consequence of the load
point moving towards the yield surface apex. Thus, it is clear that the model captures the fact that
the H load component which must be mobilized for movement along the seabed surface to occur with a

penetrative component is greater than that needed to follow a level or ascending trajectory.

7.4.9 Summary

For the chosen pipe and soil properties, and for the prescribed initial embedment depth, the results of
Test A confirm that it is inadvisable to lay the pipeline along a straight path. This conclusion stems from:
(i) the plastic straining predicted to occur under heating, and (ii) the outward ratcheting of the apex
of the central buckle lobe under cyclic heating/cooling. As discussed earlier, the presence of lengths of
pipe which undergo yielding is, in itself, typically insufficient to conclude that the pipe will not meet the
relevant limit states. However, given that the inclusion of internal pressure loading would lead to a more
onerous stress state, and given the predicted increase in lateral displacement at the apex of the central
buckle lobe under cyclic heating/cooling, it would appear likely that a limit state would be exceeded at
some point in the lifespan of the pipe. (Of course, definitive conclusions to confirm this assertion can
only be drawn once the analyses reported here are extended to simulate internal pressure changes.) It
is important to bear in mind that only one sinusoidal function to describe the initial imperfection has
been considered here and, likewise, just one starting embedment depth. In practice, to provide more
definitive conclusions, a parametric study would need to be carried out, to ascertain the influence of

varying the imperfection amplitude/wavelength and also the initial embedment depth. Regarding the
ymng
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F1G. 7.20: Scaled in-plane displacements at intermediary points during the simulation, superimposed on the
initial lay profile.

performance of the macro-element model, it is important to highlight that the findings deduced above
relied upon the model’s ability to account for cyclic changes in the direction of lateral displacement, and

the corresponding deposition and merger of berms.

7.5 Test B results

7.5.1 1st cycle

Fig.7.20a is a plan view of the initial position of the pipeline in the X:Y plane, together with
its deflected position at the end of heating in the first cycle. For clarity, the horizontal and lateral
deflections, u and v, have been scaled by a factor, ¢ = 20. This figure shows that, once fully heated (i.e.
at AT = 175°C), the portions of the pipeline which are predicted to undergo substantial displacement
are those portions that were laid along the circular arcs; the initially straight lengths, on the other hand,
are seen to be largely undisturbed. The peak lateral displacement at Ch.1000m was 4.17m, whereas the
peak lateral displacement at Ch.1200m was just 0.29m.

Fig. 7.21a shows the variation, with AT, of the lateral displacement at Ch.1000m during the first
cycle. This figure shows that lateral displacement commenced almost immediately after heating started,
and thereafter increased in an approximately linear manner with AT. This response is indicative of

a stable accumulation of displacement and, hence, suggests that by laying the pipeline in a snaked
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configuration, a stable bending, rather than unstable buckling, response can be induced. The plot in
Fig.7.22a — showing the variation of the axial load, Py, with AT — adds support to this claim, since F,
is seen to increase monotonically with AT’ rather than falling suddenly on reaching a critical AT value,
as was the case in Test A. As noted in Chapter 1, a stable bending response is generally considered
preferable, since it is less sensitive to the initial conditions — in particular, the exact lay configuration.

Also included in Fig.7.20a is a plot of the deflected position of the pipe once it had been fully
cooled (i.e. at AT = 0°C). This plot is seen, for the most part, to overlie the plot corresponding to the
pipe’s position prior to heating, suggesting that the vast majority of the displacement incurred during
heating was recovered on cooling. This trend is also evident from the plot in Fig.7.23a, which shows
the distribution of lateral displacement with chainage (like Fig. 7.6 for Test A, data corresponding to the
heating portions of each cycle are plotted for chainages less than 1000m, while data corresponding to the
cooling portions of each cycle are plotted for chainages greater than 1000m). A comparison between the
plots corresponding to the same AT values on either side of Ch. 1000m reveals that, while a distribution
of net lateral displacement remained following the first heating/ cooling cycle, its peak magnitude (0.24m,
at Ch.1000m) was rather low.

Fig.7.24 shows the variation of the (compressive positive) longitudinal stress, with chainage, along
the side of the pipe which forms the inside bend around Ch.1000m. This figure shows that the peak
compressive stress (52.11MPa) occurred at Ch. 797.5m (also Ch. 1202.5m), whereas the peak tensile stress
(37.82MPa) occurred at Ch.202.5m (also Ch.1797.5m). Due to symmetry, the curvature at these points
was the same and, hence, the difference in their values (14.29MPa) was due to the compressive stresses
arising from the induced axial loading. It is noteworthy that the peak compressive and tensile stresses
in Test B are substantially lower than their equivalent values in Test A; indeed, 52.11MPa is just 11.6%
of the pipe’s uniaxial yield strength (448.97MPa). Accordingly, the results of Test B suggest that, by
laying the pipe in an initially snaked configuration, a less onerous distribution of stresses is likely to arise,
thus meaning the pipe is less likely to violate a limit state. This less onerous stress distribution is also
reflected in the lower axial load induced in the pipe; at the end of heating in the first cycle, a compressive
load of 0.81MN was induced, while at the end of cooling, a tensile load of 0.87MN was induced. Finally,
it is of interest to note that, since no plastic straining occurred in Test B, the net accumulation of lateral
displacement following the first cycle of heating/cooling was due, solely, to the plasticity inherent to the
macro-element model.

For the first heating/cooling cycle, Fig. 7.25a contains plots showing the load and displacement out-
puts from the instance of the macro-element located at Ch.1000m. These plots show that V' remained
close to the prescribed value of the submerged per-unit-length weight (2kN/m) and that, on heating,
the trajectory of the pipe was approximately horizontal. The plot in u:H space also shows that the per-

unit-length horizontal load, H, gradually increased during heating, reaching a peak value of 1.75kN/m.
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From Fig.7.26a — which shows the predicted seabed surface (and pipe position) at the end of heating
in the first cycle — it is apparent that lateral displacement brought about the growth of a substantial
berm. This tallies with the increase in the horizontal per-unit-length load noted above. On cooling, the
plot in u:w space in Fig.7.25a shows that the pipe initially underwent penetration, before leveling off
and then rising slightly upward. This displacement history brought about the growth of a second berm,
deposited close to where the pipe (at Ch.1000m) was located prior to heating; see Fig.7.26b (the plot
showing the seabed surface at the end of cooling in the first cycle). In accordance with the growth of
the second berm, the magnitude of the per-unit-length horizontal load, H, is also seen to have increased

during cooling.

7.5.2 Cycles 2-10

Fig.7.21b shows the variation, with AT, of the lateral displacement at Ch.1000m for a second cycle
of heating and cooling (in which the temperature was, again, raised and lowered by 175°C). As in the
first cycle, the increase of lateral displacement with AT during heating is seen to be approximately linear
(as shown by the red curve). However, a comparison between this plot and the one in Fig.7.21a reveals
that the peak amplitude in the second cycle (3.84m) was less than the peak amplitude in first cycle
(4.17m). The plot in Fig.7.21b corresponding to the cooling portion of the second cycle (shown in blue)
lies close to the plot corresponding to the heating portion (shown in red). This indicates that most of
the lateral displacement incurred during heating was recovered on cooling. At Ch.1000m, the net gain
in lateral displacement arising from the second heating/cooling cycle was just 0.10m (such that, after
two heating/cooling cycles, the pipe, at Ch. 1000m, is predicted to have moved just 0.34m laterally from
its initial position).

For cycles 3-10, heating and cooling through a temperature range of 175°C was also simulated.
In Fig. 7.25b, plots showing the load and displacement outputs from the instance of the macro-element
located at Ch. 1000m are provided. The u:H plots for cycles 2-10 are seen to form a well-defined hysteresis
loop, with the data-markers corresponding to the same AT value in each cycle plotting within close to

one another. A comparison between this plot and the one in u:H space in Fig.7.25a reveals that, at
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Ch.1000m, the magnitude of the per-unit-length horizontal load, H, was greater at the end of heating
in the second cycle than at the end of the heating in the first cycle. This greater resistance to lateral
displacement is consistent with the lower amplitude lateral displacement predicted in the second cycle
relative to the first (as noted above). The underlying cause of the increase in H following the second
heating/cooling cycle is due to the increase in the height of the berm at the rightmost lateral displacement
extremity, as shown in Fig.7.26c. A similar correspondence between the growth of the berm at the
leftmost extremity and the increase in the magnitude of H at the end of cooling portion of the second
cycle is also discernible from an examination of Figs 7.25a and 7.26d.

Fig.7.21c shows the variation, with AT, of the lateral displacement at Ch.1000m for cycles 3-10.
This figure shows that the plots corresponding to the heating and cooling portions of each cycle (shown
in red and blue respectively) overlie one another. Accordingly, it is apparent that under cyclic heat-
ing/cooling, the pipe, at Ch.1000m, is predicted to undergo oscillatory movement of approximately
constant amplitude. This response in unsurprising given the plots in Figs 7.26e-7.26t which show that,
under cyclic loading, further penetration is predicted, causing the heights of the berms to increase and,
thus, exaggerating their restraining effect.

It is interesting to note that the u:H hysteresis loops in Fig. 7.25b are of a similar shape to the AT: Py
curves in Fig. 7.22¢, thus reflecting the correspondence between the magnitude of the induced axial load
and the magnitude of the distributed load acting to restrain the pipe’s lateral displacement. Specifically,
the build-up in compressive loading corresponded to the accumulation of positive H (which restrained
against rightward movement at Ch.1000m), while the build-up in tensile loading corresponded to the
accumulation of negative H (which restrained against leftward movement at Ch.1000m). Accordingly,
given the increase in the magnitude of the lateral loading exerted on the pipe in the second cycle relative
to the first, as noted above, it is unsurprising that the peak compressive and tensile loads in the second

cycle are seen to be of higher magnitude than those in the first cycle (compare Figs 7.22a and 7.22b).

7.5.3 Final heating
Fig.7.20b shows that, as expected, the final increase in temperature by 205°C was accommodated by
further lateral displacement around the portion of the pipe forming the circular arcs. At Ch.1000m, the

peak lateral displacement at AT = 205°C was 4.88m, 1.09m higher than the peak lateral displacement
encountered in cycles 3-10 (see Fig.7.21d). In Fig.7.24b, the predicted longitudinal stress distribution

corresponding to heating to 205°C is shown. A comparison between this plot and the one shown in red in
Fig.7.24a reveals that, while the shape of the longitudinal stress distributions are similar, the values of
stress induced on applying the final increase in temperature were of higher magnitude than those induced
following the first increase in temperature by 175°C. Despite this, it is noteworthy that the compressive
peak longitudinal stress along this side of the pipe (62.22MPa) was still just 13.9% of the yield value
(448.97MPa).
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The plot in Fig. 7.25c shows that the peak H at Ch.1000m did not increase beyond its peak value in
the preceding cycle. This response arose because, following the preceding ten cycles of lateral displace-
ment, the berm formed at the rightmost extremity was sufficiently large that increasing the temperature
by a further 30°C brought about no significant further hardening. In accordance with this observation,
the plot in Fig.7.22d also shows that the peak Py did not increase beyond the maximum value reached

on heating in the preceding cycles.

7.5.4 Summary

The results of Test B show that, by laying the pipeline into a snaked configuration, a stable bending,
rather than unstable buckling, response can be induced to generate the lateral displacement needed to
accommodate axial expansion. While the results of Test A suggest that cyclic heating/cooling is likely
to be accompanied by the outward ratcheting of the central buckle lobe (together with the progression
towards an increasingly onerous stress state), the results of Test B, by contrast, suggest the attainment of
a regular, oscillatory pattern of lateral displacement (with a correspondingly predictable stress variation).

The latter scenario — i.e. laying the pipeline into a snaked configuration — is clearly preferable.

7.6 Concluding comments

Details of the implementation of the proposed force-resultant model as a User-defined ELement
(UEL) into Abaqus structural analyses were reported. The results of two example simulations, which
demonstrate that the model can be successfully used in structural analyses representative of those carried
out in industry, were then presented. A nominally straight length of pipe was considered in the first
example, for which an unstable lateral buckling response was predicted. In the second example, for

which an initially snaked pipeline configuration was considered, a stable bending response was evident.
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Importantly, the model functioned in a realistic manner during thermal cycles and the corresponding
reversals in the direction of lateral displacement. Also, the ability to simulate multiple heating/cooling
cycles (and the associated change in the direction of lateral displacement) enabled some important

findings to be deduced.



8

Conclusions

This thesis has reported the development, calibration and implementation of a force-resultant model to
predict the load:displacement response of an on-bottom pipe element on drained sand. In this chapter,
the main contributions of the thesis are summarised, and some recommendations for future work are

described.

8.1 Main contributions/findings

e The framework of a hardening plasticity force-resultant model was proposed to account for the path de-
pendence inherent to the prediction of the V:H load capacity of the seabed during lateral displacement.
Importantly, this model accounts appropriately for reversals in the direction of lateral displacement and
the evolution of the seabed surface geometry, as required for rigourous lateral buckling assessments.

e Finite element limit analysis (FELA) calculations, using OxLim, were carried out to investigate the
combined V:H loading of an on-bottom pipe section on a rigid plastic seabed under plane strain
conditions. Failure mechanisms were presented and discussed, identifying the strong dependence of
the direction of (incremental) plastic displacement on the applied V:H loading.

e Under the assumptions inherent to FELA (namely, a rigid perfectly plastic constitutive model and an
associated flow rule), loci of (V, H) yield points for a pipe resting on a seabed of prescribed surface
geometry were determined. The V:H yield locus for a seabed geometry representative of a pipe
undergoing lateral displacement was found to be confined to the positive V', positive H quadrant of
the V:H plane. During vertical penetration, by contrast, the yield surface for the same seabed strength
and pipe-soil interface was found to be symmetric about the V' axis and also of much larger extent.
The results, therefore, show that a mix of kinematic and isotropic hardening/softening occurs during
lateral displacement.

e Two intersecting parabolas were found to provide a good fit to the locus of yield points for seabed
geometries representative of a pipe undergoing either vertical penetration or lateral displacement.

Accordingly, a piecewise construction of a pair of parabolas was found to be a suitable yield function.
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e From the results of a batch-set of OxLim analyses, regression analyses were carried out to determine
the hardening parameters of the proposed yield function corresponding to a range of different seabed
surface geometries and strengths.

e Discussion was provided on the implications of using a perfectly plastic constitutive model defined
by a pressure-dependent yield criterion and a non-associated flow rule, with regard to solution well-
posedness and uniqueness. Whilst this discussion contained no original theoretical contributions, it
nevertheless serves as a succinct summary of the current understanding of a topic which has often been
inadequately addressed in the geotechnical literature. To summarise, when using such a constitutive
model, it should be recognized that loss of uniqueness and localization are both theoretically admissible
and, indeed, are evident in the results of numerical analyses.

e Incremental displacement finite element analyses were carried out to determine the history of V:H
loading acting on a pipe following a prescribed history of displacement. When using an associated flow
rule for the soil, the assigned discretisation of the seabed was found to be sufficient to allow the swipe
and probe test load paths to pass within very close proximity to the mean of the lower and upper
bound yield points determined using OxLim.

e When a non-associated flow rule was used for the soil, results indicative of localization and, hence,
mesh dependence were observed. Despite this, load paths expected to be unconservative estimates to
those corresponding to a seabed with a localized zone of appropriate width were obtained.

e The shapes of the yield loci obtained from the non-associated Abaqus analyses were found to be similar
to their associated counterparts deduced from the OxLim analyses. Therefore, the yield function based
on the OxLim results was also found to provide a good fit to the non-associated Abaqus results.

e A macroscopic non-associated flow rule was found to be required to enable predictions of the incremen-
tal plastic displacement of the pipe to be made with sufficient realism. The choice of plastic potentials
(parabolas, appropriately shifted and scaled in V:H space relative to the yield function) were found
to provide a good fit to the flow vectors deduced from the Abaqus results.

e Modifications were carried out to an existing experimental loading rig to customize it for tests in which
a rigid plane strain pipe element was subjected to cycles of lateral displacement of multiple diameter
amplitude. Accurately-controlled swipe, probe and loop tests were also carried out, generating V:H
load paths from which the size and shape of the instance of the yield surface corresponding to particular
seabed geometry was deduced.

e The results of the probe and circular looping tests confirmed that the instance of yield surface following
lateral displacement is confined to the positive V', positive H quadrant of the V:H plane, and that
it is significantly smaller than the instance of the yield surface following vertical penetration. The
experimentally-derived results also confirmed the necessity to use a non-associated macroscopic flow

rule in the force-resultant model.
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e The model was implemented as a stand-alone macro-element (coded in MATLAB) to allow a load
history to be predicted from a prescribed displacement history (and vice-versa). To assess its predictive
capabilities, retrospective simulations of the experimental tests were carried out. The simulation of
Test CV1 demonstrates that the model can provide a good prediction of the variation in the per-
unit-length horizontal load during cyclic lateral displacement of multiple diameter amplitude. The
agreement between the predicted and measured pipe trajectories was found to be acceptable in the
first cycle, although less so in subsequent cycles.

e The model was coded as a FORTRAN 90 subroutine for use as a user-defined element (UEL) in Abaqus.
Two representative pipeline structural analyses incorporating the model were carried out, showing that
it can be used in field-representative analysis cases. Importantly, by implementing the model as an
Abaqus user-defined element, the end user is largely divorced from its underlying complexity.

e For the structural analysis which was carried out using an initially nominally straight length of pipeline,
a lateral buckling response was predicted when an increase in temperature was simulated. Under cyclic
heating and cooling, the lateral displacement at the mid-span of the pipe was found to ratchet outwards,
inducing an increasingly onerous stress state.

e For the structural analysis which was carried out using an initially snaked length of pipeline, a bending
response was predicted when an increase in temperature was simulated. Under repeated cyclic heating
and cooling, it was found that a regular, oscillatory pattern of lateral displacement was predicted, with
a correspondingly regular stress variation (substantially below the yield stress at all points). Therefore,
it was concluded that, for the chosen values of the pipe and soil properties used in these simulations,
laying the pipeline into a snaked configuration is preferable to laying the pipeline along a (nominally)

straight path.

Before commencing the work reported here, the concept of devising and calibrating a force-resultant
model for a soil-structure system had been well established. However, the analysis of a thermally-loaded
on-bottom pipeline posed some unique challenges, notably that the current loading depends on the
prior displacement history, and the corresponding evolution of the seabed surface. The plasticity model
presented in this thesis is one of the first to account appropriately for the load:displacement response
during cyclic lateral displacement, and is the first large displacement plasticity model to be calibrated for
use on drained sand. It is also thought to be the first to be retrospectively tested against experimental
tests involving multiple pipe diameter lateral displacement cycles to confirm that its predictions are, in
general, appropriate. The incorporation of the model within a structural analysis is also a novel and

worthwhile contribution, as it demonstrates the feasibility of using the model in design practice.



Chapter 8: Conclusions 293

8.2 Future work

e While the retrospective simulation of Test CV1 gave an acceptable prediction of the variation in the
per-unit-length horizontal load during cyclic lateral displacement, it was noted that the model failed to
predict sufficient upward displacement on approaching a berm. Accordingly, following several cycles of
heating and cooling, the model is likely to predict too much penetration. To rectify this shortcoming,
the calibration of the flow rule needs further consideration. In particular, the plastic potentials must
be fitted meticulously around the flow vector corresponding to purely horizontal incremental plastic
displacement so as to give the appropriate correspondence between the vertical load (hence, pipe
weight) and the tendency to rise or plough through a berm. This calibration is likely to need further
data input, requiring more finite element analyses to be carried out (or, otherwise, experimental tests).

e The model reported here was of the hardening elastic-plastic class. An issue not addressed fully in
the preceding chapters is the influence of the elastic loading at the initiation of lateral displacement.
For a structural analysis in which lateral buckling occurs, the prediction of the peak axial load (hence,
temperature/pressure rise needed to induce instability) is likely to depend quite strongly on the chosen
elastic stiffness values. In reality, soil does not respond in a distinct elastic-plastic manner, but rather
undergoes a gradual transition to yield. Methods to account for this response have been established
for offshore foundations (see Nguyen-Sy & Houlsby [138] for example), and it is thought that a similar
approach could be used to extend the model proposed here.

e The loop and probe tests reported in Chapter 5 provided some valuable insight into the V:H load
capacity of the seabed following multiple-diameter lateral displacement. Elsewhere, it has become
commonplace to carry out plane strain testing with the sole objective of obtaining load:displacement
paths which are representative of those experienced in the field. While comparisons between the
results of such tests and the retrospective predictions of a model are clearly valuable, for the rigorous
calibration of the model itself, tests concerned with determining the combined V:H load capacity at
an intermediary position during lateral displacement are needed. Accordingly, carrying out further
tests similar to the swipe, loop and probe tests described here is thought to be very much worthwhile.

e Quasi-static structural analyses were described in Chapter 7. While this type of analysis is appropriate
if a bending response is induced, for the case of lateral buckling it is thought that a dynamic analysis
— which accounts for stabilising inertia effects — is preferable. Abaqus offers facilities to allow dynamic
problems to be modelled; accordingly, it is felt that the extension to a dynamic structural analysis

would not be particularly challenging.
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Appendix

A.1 Plane strain parameter match between Mohr-Coulomb (MC) and
Drucker-Prager (DP)

The following is a derivation of the relationships between the MC parameters, ¢, ¢ and 1, and
the equivalent DP parameters, ogp, kgp and (g,, to obtain the same plane strain collapse load. This
derivation follows from Brinkgreve [139].

The DP plastic potential function is given as:

9dp = \/ J2 (sij) + Bapp (A.1.1)

such that, on the smooth portion of f,,. = 0 (the MC yield surface), the incremental plastic strain along

the plane strain axis is given as:

094 s Ba
deP =6 P —4 vy =L . Al12
Eby A 90,y A (2 % + 3 ) ( )

For a perfectly plastic material, dh), is zero, which implies that the following relation between the stresses
must hold:

2Bapr/ T2 (535
Syy = —M. (A.1.3)

This relation can be used to elimate sy, (and o,,) from the definitions of the mean stress, p, and the
second invariant of the deviatoric stress tensor, Jo, to give:
2
_ 3(|Isrealls)

T (53
6‘11’72(8]) and Jy = :
3 3— B3,

where 0., = 1/2 (040 + 022) and [|Spedl|ly = V/$2, + $2. (as introduced in Chapter 3). Accordingly, the

pP=0m —

DP yield criterion, in 3-D:

fdp =4/J9 (Sij) + Qgpp — kdp =0 (A.1.4)

can be restricted to plane strain by substitution of the above relations for p and Jy to give:

- adpﬁdp 3 — adpﬁdp

HsredH2 -0
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The MC yield criterion, under the restriction to plane strain, is:
Jme = |[Sredlly + Omsing’ — ' cos¢’ =0 (A.1.6)

such that a comparison between Eqs A.1.5 and A.1.6 leads to the following parameter matches:

3sin ¢’

oy — (4.4.5 bis.)
Bapsin g’ + /3 3 - ﬁﬁp)
B d cos ¢ (3 — Oédpﬁdp (4.4.6 bis.)

kap =
A l 3 ﬁ dp

In a largely analogous manner, the plane strain match between ¢ and [y, is readily derived by first
restricting the expression for the DP plastic potential (Eq.A.1.1) to plane strain (by substituting the

above expressions for p and Js) to give:

\/_ﬁdp

[Sredll + (A.1.7)
\/ 3 6dp
The MC plastic potential, under the restriction to plane strain, is:
Gme = ||Sred || + omsiny =0 (A.1.8)
and, hence, for a plane strain parameter match:
3
Bap = _V3sing (4.4.4 bis.)

/3 +sin? ¢

A.2 Implementation of the DP constitutive model as a UMAT

The following details the algorithm that was implemented in the User-Material (UMAT) subroutine
to update the stress components, 011, 099, 033 and o013, for a prescribed set of increments in the in-
plane strain components, €11, €33 and €13. This algorithm follows largely from the one presented by de

Souza Neto et al. [86].

1. Trial stress evaluation. The first step in the algorithm is to determine the trial stress under the
premise that the entirety of the strain increment passed to the UMAT is elastic i.e. Ae;j = Aefj. For
an isotropic material, Hooke’s law gives the following relationships for the trial mean stress, pt™*@,
and the trial deviatoric stress, stgml

Pl = K Aegydi (A.2.1)
J

tmal =92G (Afij _ éAekk61]> (AQQ)

where K is the bulk modulus and G is the shear modulus. K and G can be expressed in terms of F

and v according to:

E
6= 5 (A.2.3)
K- Y (A2.4)

3(1—2v)
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f(lp = 0

Fic. A.1: Selection of return mapping scheme for the DP stress update

2. Yield function evaluation. The second step is to evaluate the DP yield function, fg,, for p = ptrial

and s;; = sgi“l. If fg, <0, the trial solution is accepted as the actual solution and the current call to
the algorithm is terminated. Otherwise, the algorithm proceeds to step 3 to correct the trial stresses
such that they satisfy fg4, = 0.

3. Plastic correction: return to smooth portion of yield surface. The third step is to correct
the trial stress under the premise that the corrected stress plots on the smooth portion of the yield

surface, such that:

g corr
Al = AN — AN | — L 1 B0 (A.2.5)
’ daij corr
2 J2 (sij >
and, hence:
pcorr — ptrial _ KA)‘ﬂdp (A26)
A GANsSI™
s = st - (A.2.7)
Iy (s
where p“" and sfj‘?”” are, respectively, the corrected mean stress and deviatoric stress tensor. On

recognizing that:

iy S — (A.2.8)

the right-hand side of EquA.2.7 can be re-written in terms of the known variables, p!"*® and SZW
according to:
A ANGstTial
qujqrr _ Sglal Y (A29)

J2 <Sz§m'al>
ij
A\ is the only unknown in the stress correction relations, Eqs A.2.6 and A.2.9. A\ is found by

corr corr

constraining the magnitude of the stress correction to be such that fz, = 0 for p = p i

and s;; = s

i.e. enforcing the consistency condition:

Jap = 72 (5597 + Capp™ — by = 0. (A.2.10)

v
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Algorithm A.1 DP stress update, retaining elastic stiffness matrix

Calculate K and G from E and v Eqgs A.2.3 and A.2.4
Calculate s and p'"@! from Ae;; Eqs A.2.2 and A.2.1
Calculate fg, for p = p' and s;; = i7" Eq. A.1.4
if fap <0
sij — S%«ml, p — ptrial
else
Calculate A\ Eq. A.2.12
Calculate s§7™" and p“™" Eq.A.2.6 and A.2.9
Sij = S5O, p — peOrT

Calculate /J2(sg"™")

If |/ J2(s59) < 0
sij < 0, p  kanfay,
end if
end if

Assemble elastic stiffness matrix. Eq.4.4.1, page 121

Eqs A.2.6, A.2.8 and A.2.9 can be used to eliminate 4/ Jo (s%’”) and p®’" from Eq.. A.2.10 to give:

Ty (sl5190) = GAX + gy (71—~ ANK ) = gy = 0. (A.2.11)
which, on re-arrangement, gives:

J2 ((ﬁ;ial) + adpptrial _ kdp
AN = . A2.12
G+ Oédpﬁde ( )

Hence, by first evaluating A\, p®™ can be calculated from Eq. A.2.6 and si;" from Eq. A.2.9 (from

which o;; is trivially found according to: o;; = 5%9”“ + p0;5).

4. Plastic correction: return to apex of yield surface. The final step is to test the validity of the

assumption made in step 3, namely, that the stress returns to the smooth portion of the yield surface.

This test is conveniently carried out by evaluating 4/Jo (sfj?”’) since — as shown on the schematic

plot, in p : \/J2 (s45) space, in Fig. A.1 — [ Jo <s§]‘?”"> > 0 for any correction in which the final stress
points plots on the smooth portion of the yield surface (such as, A—A’), whereas ,/.Jo <sff”’) <0

for any correction in which the final yield point plots outside of the yield surface (such as, B—B’).
Accordingly, the corrected stresses at A’ are accepted as the actual solution, whereas an alternative

correction is required for the trial stresses at B. This alternative correction, labelled in the figure as

B—B”, returns the stresses at the apex of the yield surface, namely, p°°"" and sfj‘?” are set as —kap/agy,

and 0 respectively.
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Algorithm A.1 summarizes the above four steps.

A.3 Consecutive job submission on a local PC

The following Python (.py) script was used to schedule the submission of several Abaqus jobs to run
consecutively on a local PC. This script was tested and used on a Windows XP Platform. The command
prompt was pointed to a common directory containing: the .py file, the Abaqus input files (.inp) and

the user subroutine files (.for or .f). The Python script was called from the command line with:

>>abaqus python submit.py

import os

os.system('abaqus job=0LDJOB1 user=USER1’)
os.system(‘abaqus job=TEST1 0ldjob=0LDJOB1 user=USER1’)
os.system('abaqus job=TEST2 o0ldjob=0LDJOB1 user=USER1’)
os.system(‘abaqus job=TEST3 0ldjob=0LDJOB1 user=USER1’)
etc

Python submission script, submit.py

A.4 Bash submission script for job submission on clusters HAL/SAL
The Bash script, given on page 307, was used to schedule the submission of the Abaqus jobs on

the supercomputer (using clusters, HAL/SAL).! As discussed in §4.4.6 of Chapter 4, this script submits

several serial Abaqus jobs to run concurrently. It was called from the working directory within HAL /SAL,

with the command:

>>gsub submit.sh

A.5 Sample Abaqus .inp file
Example copies of the Abaqus input files (.inp) used to carry out the analyses reported in Chapter
4 are given on pages 308-310. For brevity, only the first two lines of each section specifying the model

geometry (e.g. the list of nodal coordinates) are provided. The symbol, C, denotes a comment.

!The initial draft of the Bash submission script was written by Dr Mitai Duta, Scientific Software Advisor,
Oxford Supercomputing Centre.
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#!/bin/bash

#PBS -1 select=1:mpiprocs=1 # select one node and one processor

#PBS -1 walltime=10:00:00 # set maximum time for jobs, per core

#PBS -N ABAQUS _jobs # assign a public visible name to the set of jobs
#PBS -m bea # send e-mail to notify start and end of job
#PBS -V # use submission environment

# assign temporary variable names
JOBNAME=TEST
OLDJOBNAME=0LDJOB

$ABAQUSHOME/abaqus . sh # prepare Abaqus

cd $PBS_O_WORKDIR # move into directory from which the job was
submitted

cp $JOBNAME*.inp $TMPDIR # copy Abaqus .inp files to the working directory,
TMPDIR

cp $0LDJOBNAME#*.* $TMPDIR # copy old Abaqus files (.stt, .res., .mdl., .odb, .prt)
to TMPDIR

cp *.f $TMPDIR # copy user-subroutine source code file (USER.f) to
TMPDIR

cd $TMPDIR # move into TMPDIR, to access high performance

scrath disk

# submit jobs to Abaqus
abaqus job=TEST1 0ldjob=0LDJOB user=USER cpus=1 &
abaqus job=TEST2 0ldjob=0LDJOB user=USER cpus=1 &

# repeat for up to 8 jobs
sleep 60 # wait 60s, to allow Abaqus to write lock files

# while loop to wait for all Abaqus lock files (.Ick) to be removed before exiting
while [ $locked -ne 0 ]; do # remain in while loop is a .Ick file exists
sleep 600 # wait 600s
cp $JOBNAME*.x $PBS_O_WORKDIR  # copy .sta files back to original directory
# check if any .Ick files still exist
locked=$(1s $JOBNAME*.lck 2> /dev/null | wc -1);

done # end of while loop

cp *.odb $PBS_O_WORKDIR # copy .odb files back to original directory
cp *.sta $PBS_O_WORKDIR # copy .sta files back to original directory

cp *.msg $PBS_O_WORKDIR # copy .msg files back to original directory
cp *.dat $PBS_O_WORKDIR # copy .dat files back to original directory

Bash submission script, submit.sh.
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*HEADING

Gravity loading

*RESTART, WRITE, OVERLAY C  Instruct re-start files to be written
*NODE C  Specify node coordinates

1, -8, -8.500000e 4000

2, -8, -6.790488e+-000

*ELEMENT,ELSET=SOIL,TYPE=CPE6 C  Specify connectivity and request plane-strain quadratic
1,1,15,2,3435,3436,3437 elements
2,22,15,1,3438,3435,3439

*ELSET,ELSET=LEFT C  Specify elements on the boundary FA

1

7

*ELSET,ELSET=RIGHT C  Specify elements on the boundary DE

3

12

*ELSET,ELSET=ETOP C  Specify elements on the pipe-soil interface

3093,

3873,

*NODE,NSET=FOOTING C  Define rigid body control node at origin

900001000,0,0

*NSET, NSET=BOT C  Specify nodes on EF

1

22

*NSET, NSET=RIGHT C  Specify nodes on DE

3427

3428

*NSET, NSET=LEFT C  Specify nodes on FA

1

2

*NSET, NSET=CIRCU C  Specify nodes on pipe-soil interface, BC

1138

1142

*SOLID SECTION, ELSET=SOIL, MATERIAL=SAND C  Instruct each element in the set SOIL to be made of the
material SAND

*MATERIAL, NAME=SAND C  Define the material, SAND

*DEPVAR

5

Abaqus .inp file for gravity loading.




Appendix A

*USER MATERIAL, CONSTANTS=0
*DENSITY

8.157730e-+002

*BOUNDARY

BOT,1,2

BOT.6

RIGHT,1

LEFT,1

900001000,6

900001000,1
*SURFACE,TYPE=SEGMENTS,
NAME=FOOTING
START,4.898979e-001,-1.000000e-001
LINE,4.874882e-001,-1.111544e-001
LINE,4.848244e-001,-1.222509¢-001
LINE,4.819081e-001,-1.332837¢-001

*SURFACE, TYPE=ELEMENT,
NAME=SOIL LEVEL

ETOP

*RIGID BODY,
ANALYTICALSURFACE=FOOTING,
REFNODE=900001000

*CONTACT PAIR, TIED, ADJUST=CIRCU,

INTERACTION=ROUGH, SMOOTH=0
SOIL LEVEL, FOOTING

*SURFACE INTERACTION, NAME=ROUGH

*FRICTION

0

*STEP, AMPLITUDE=RAMP, INC=20000
*STATIC
1.000000e-003,1,1.000000e-008,3.000000e-002
*CONTROLS, PARAMETERS=TIME
INCREMENTATION

38,32,20,46,30,6,,18,,

*CONTROLS, PARAMETERS=FIELD
0.005, 0.050, , ,0.025

*DLOAD

SOIL, GRAV, 9.80665, 0.0, -1.0, 0.0
*OUTPUT, HISTORY, FREQUENCY=60
*NODE OUTPUT, NSET=FOOTING

U, RF
*ENDSTEP

Specify SAND to be a User Defined Material
Specify soil density

Specify boundary conditions on soil perimeter

Specifiy boundary conditions on pipe

Define a surface for the pipe perimeter, named FOOTING

Specify FOOTING as a series of line segments

Define a surface for the soil on the pipe-soil interface, named
SOIL LEVEL

Specify FOOTING by the element set ETOP

Specify the pipe as a rigid body, defined by FOOTING and
with reference node 900001000

Specify contact pairing between FOOTING and SOIL LEVEL;

adjust the pair to be initially in contact

Begin gravity loading step

Adjust default time incrementation parameters

Adjust solution convergence tolerances

Apply distributed load over the elements in set SOIL

Request history output every 60 iterations

Specify resultant pipe loads and displacements as history

outputs

Abaqus .inp file for gravity loading (continued).
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*HEADING
V:H loading of a pipe-element on sand

*RESTART, READ

*STEP, INC=1000000, AMPLITUDE=RAMP

*STATIC
1.000000e-004,1,5.000000e-008,7.500000e-005

*CONTROLS, PARAMETERS=TIME INCREMENTATION

19,16,3,23,15,3,9
*CONTROLS, PARAMETERS=FIELD
0.005, 0.050, , ,0.025

*BOUNDARY

900001000,1,1,0,
900001000,2,2,-4.000000e-003,
*OUTPUT,HISTORY

*NODE OUTPUT,NSET=FOOTING

U, RF

*OQUTPUT,FIELD, FREQUENCY=1000000
*NODE OUTPUT, NSET=node out

U

*ELEMENT OUTPUT

S, E

*ENDSTEP

Restart analysis from end of gravity loading step

Step to apply displacement-controlled movement

Adjust default time incrementation

Adjust default convergence tolerance

Set displacements (u and w)

Request history outputs for control node on pipe

Request field outputs at end of step

Abaqus .inp file for displacement-controlled simulation of pipe movement.




